Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(4): e17271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613240

RESUMO

Ecological and evolutionary theories have proposed that species traits should be important in mediating species responses to contemporary climate change; yet, empirical evidence has so far provided mixed evidence for the role of behavioral, life history, or ecological characteristics in facilitating or hindering species range shifts. As such, the utility of trait-based approaches to predict species redistribution under climate change has been called into question. We develop the perspective, supported by evidence, that trait variation, if used carefully can have high potential utility, but that past analyses have in many cases failed to identify an explanatory value for traits by not fully embracing the complexity of species range shifts. First, we discuss the relevant theory linking species traits to range shift processes at the leading (expansion) and trailing (contraction) edges of species distributions and highlight the need to clarify the mechanistic basis of trait-based approaches. Second, we provide a brief overview of range shift-trait studies and identify new opportunities for trait integration that consider range-specific processes and intraspecific variability. Third, we explore the circumstances under which environmental and biotic context dependencies are likely to affect our ability to identify the contribution of species traits to range shift processes. Finally, we propose that revealing the role of traits in shaping species redistribution may likely require accounting for methodological variation arising from the range shift estimation process as well as addressing existing functional, geographical, and phylogenetic biases. We provide a series of considerations for more effectively integrating traits as well as extrinsic and methodological factors into species redistribution research. Together, these analytical approaches promise stronger mechanistic and predictive understanding that can help society mitigate and adapt to the effects of climate change on biodiversity.


Assuntos
Biodiversidade , Mudança Climática , Filogenia , Geografia , Fenótipo
2.
Curr Biol ; 34(3): 661-669.e4, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38218182

RESUMO

According to classic models of lineage diversification and adaptive radiation, phenotypic evolution should accelerate in the context of ecological opportunity and slow down when niches become saturated.1,2 However, only weak support for these ideas has been found in nature, perhaps because most analyses make the biologically unrealistic assumption that clade members contribute equally to reducing ecological opportunity, even when they occur in different continents or specialize on different habitats and diets. To view this problem through a different lens, we adapted a new phylogenetic modeling approach that accounts for the fact that competition for ecological opportunity only occurs between species that coexist and share similar habitats and diets. Applying this method to trait data for nearly all extant species of landbirds,3 we find a widespread signature of decelerating trait evolution in lineages adapted to similar habitats or diets. The strength of this pattern was consistent across latitudes when comparing tropical and temperate assemblages. Our results provide little support for the idea that increased diversity and tighter packing of niches accentuates evolutionary slowdowns in the tropics and instead suggest that limited ecological opportunity can be an important factor determining the rate of morphological diversification at a global scale.


Assuntos
Evolução Biológica , Aves , Animais , Filogenia , Aves/anatomia & histologia , Ecossistema , Fenótipo
3.
Mol Phylogenet Evol ; 190: 107954, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898295

RESUMO

Species are seen as the fundamental unit of biotic diversity, and thus their delimitation is crucial for defining measures for diversity assessments and studying evolution. Differences between species have traditionally been associated with variation in morphology. And yet, the discovery of cryptic diversity suggests that the evolution of distinct lineages does not necessarily involve morphological differences. Here, we analyze 1,684,987 variant sites and over 4,000 genes for more than 400 samples to show how a tropical montane plant lineage (Geonoma undata species complex) is composed of numerous unrecognized genetic groups that are not morphologically distinct. We find that 11 to 14 clades do not correspond to the three currently recognized species. Most clades are genetically different and geographic distance and topography are the most important factors determining this genetic divergence. The genetic structure of this lineage does not match its morphological variation. Instead, this species complex constitutes the first example of a hyper-cryptic plant radiation in tropical mountains.


Assuntos
Biodiversidade , Deriva Genética , Filogenia , Especiação Genética
4.
Nat Ecol Evol ; 7(8): 1181-1193, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429904

RESUMO

Explaining broad molecular, phenotypic and species biodiversity patterns necessitates a unifying framework spanning multiple evolutionary scales. Here we argue that although substantial effort has been made to reconcile microevolution and macroevolution, much work remains to identify the links between biological processes at play. We highlight four major questions of evolutionary biology whose solutions require conceptual bridges between micro and macroevolution. We review potential avenues for future research to establish how mechanisms at one scale (drift, mutation, migration, selection) translate to processes at the other scale (speciation, extinction, biogeographic dispersal) and vice versa. We propose ways in which current comparative methods to infer molecular evolution, phenotypic evolution and species diversification could be improved to specifically address these questions. We conclude that researchers are in a better position than ever before to build a synthesis to understand how microevolutionary dynamics unfold over millions of years.


Assuntos
Evolução Biológica , Evolução Molecular , Biodiversidade
5.
Biology (Basel) ; 11(8)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-36009812

RESUMO

The modern era of analytical and quantitative palaeobiology has only just begun, integrating methods such as morphological and molecular phylogenetics and divergence time estimation, as well as phenotypic and molecular rates of evolution. Calibrating the tree of life to geological time is at the nexus of many disparate disciplines, from palaeontology to molecular systematics and from geochronology to comparative genomics. Creating an evolutionary time scale of the major events that shaped biodiversity is key to all of these fields and draws from each of them. Different methodological approaches and data employed in various disciplines have traditionally made collaborative research efforts difficult among these disciplines. However, the development of new methods is bridging the historical gap between fields, providing a holistic perspective on organismal evolutionary history, integrating all of the available evidence from living and fossil species. Because phylogenies with only extant taxa do not contain enough information to either calibrate the tree of life or fully infer macroevolutionary dynamics, phylogenies should preferably include both extant and extinct taxa, which can only be achieved through the inclusion of phenotypic data. This integrative phylogenetic approach provides ample and novel opportunities for evolutionary biologists to benefit from palaeontological data to help establish an evolutionary time scale and to test core macroevolutionary hypotheses about the drivers of biological diversification across various dimensions of organisms.

6.
Proc Biol Sci ; 289(1966): 20211514, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34982949

RESUMO

Why are speciation rates so variable across the tree of life? One hypothesis is that this variation is explained by how rapidly reproductive barriers evolve. We tested this hypothesis by conducting a comparative study of the evolution of bird song, a premating barrier to reproduction. Speciation in birds is typically initiated when geographically isolated (allopatric) populations evolve reproductive barriers. We measured the strength of song as a premating barrier between closely related allopatric populations by conducting 2339 field experiments to measure song discrimination for 175 taxon pairs of allopatric or parapatric New World passerine birds, and estimated recent speciation rates from molecular phylogenies. We found evidence that song discrimination is indeed an important reproductive barrier: taxon pairs with high song discrimination in allopatry did not regularly interbreed in parapatry. However, evolutionary rates of song discrimination were not associated with recent speciation rates. Evolutionary rates of song discrimination were also unrelated to latitude or elevation, but species with innate song (suboscines) evolved song discrimination much faster than species with learned song (oscines). We conclude that song is a key premating reproductive barrier in birds, but faster evolution of this reproductive barrier between populations does not consistently result in faster diversification between species.


Assuntos
Especiação Genética , Aves Canoras , Animais , Evolução Biológica , Aprendizagem , Filogenia , Reprodução
7.
PLoS Biol ; 19(8): e3001270, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428214

RESUMO

The latitudinal diversity gradient is one of the most striking patterns in nature, yet its implications for morphological evolution are poorly understood. In particular, it has been proposed that an increased intensity of species interactions in tropical biota may either promote or constrain trait evolution, but which of these outcomes predominates remains uncertain. Here, we develop tools for fitting phylogenetic models of phenotypic evolution in which the impact of species interactions-namely, competition-can vary across lineages. Deploying these models on a global avian trait dataset to explore differences in trait divergence between tropical and temperate lineages, we find that the effect of latitude on the mode and tempo of morphological evolution is weak and clade- or trait dependent. Our results indicate that species interactions do not disproportionately impact morphological evolution in tropical bird families and question the validity of previously reported patterns of slower trait evolution in the tropics.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Modelos Biológicos , Fenótipo , Animais , Comportamento Alimentar , Simpatria
8.
Nat Commun ; 12(1): 2353, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883555

RESUMO

One key hypothesis explaining the fate of exotic species introductions posits that the establishment of a self-sustaining population in the invaded range can only succeed within conditions matching the native climatic niche. Yet, this hypothesis remains untested for individual release events. Using a dataset of 979 introductions of 173 mammal species worldwide, we show that climate-matching to the realized native climatic niche, measured by a new Niche Margin Index (NMI), is a stronger predictor of establishment success than most previously tested life-history attributes and historical factors. Contrary to traditional climatic suitability metrics derived from species distribution models, NMI is based on niche margins and provides a measure of how distant a site is inside or, importantly, outside the niche. Besides many applications in research in ecology and evolution, NMI as a measure of native climatic niche-matching in risk assessments could improve efforts to prevent invasions and avoid costly eradications.


Assuntos
Clima , Espécies Introduzidas , Mamíferos , Modelos Biológicos , Animais , Teorema de Bayes , Bases de Dados Factuais , Ecossistema , Dinâmica Populacional
9.
Evolution ; 75(5): 1097-1105, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788258

RESUMO

Phylogenetic comparative methods are often used to test functional relationships between traits. However, million-year macroevolutionary observational datasets cannot definitively prove causal links between traits-correlation does not equal causation and experimental manipulation over such timescales is impossible. Although this caveat is widely understood, it is less appreciated that different phylogenetic approaches imply different causal assumptions about the functional relationships of traits. To make meaningful inferences, it is critical that our statistical methods make biologically reasonable assumptions. Here we illustrate the importance of causal reasoning in comparative biology by examining a recent study by Avaria-Llautureo et al (2019). that tested for the evolutionary coupling of metabolic rate and body temperature across endotherms and found that these traits were unlinked through evolutionary time and that body temperatures were, on average, higher in the early Cenozoic than they are today. We argue that the causal assumptions embedded into their models made it impossible for them to test the relevant functional and evolutionary hypotheses. We reanalyze their data using more biologically appropriate models and find support for the exact opposite conclusions, corroborating previous evidence from physiology and paleontology. We highlight the vital need for causal thinking, even when experiments are impossible.


Assuntos
Metabolismo Basal/fisiologia , Temperatura Corporal/fisiologia , Filogenia , Animais , Evolução Biológica , Aves/fisiologia , Mamíferos/fisiologia
10.
Syst Biol ; 70(2): 376-388, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681798

RESUMO

Current phylogenetic comparative methods modeling quantitative trait evolution generally assume that, during speciation, phenotypes are inherited identically between the two daughter species. This, however, neglects the fact that species consist of a set of individuals, each bearing its own trait value. Indeed, because descendent populations after speciation are samples of a parent population, we can expect their mean phenotypes to randomly differ from one another potentially generating a "jump" of mean phenotypes due to asymmetrical trait inheritance at cladogenesis. Here, we aim to clarify the effect of asymmetrical trait inheritance at speciation on macroevolutionary analyses, focusing on model testing and parameter estimation using some of the most common models of quantitative trait evolution. We developed an individual-based simulation framework in which the evolution of phenotypes is determined by trait changes at the individual level accumulating across generations, and cladogenesis occurs then by separation of subsets of the individuals into new lineages. Through simulations, we assess the magnitude of phenotypic jumps at cladogenesis under different modes of trait inheritance at speciation. We show that even small jumps can strongly alter both the results of model selection and parameter estimations, potentially affecting the biological interpretation of the estimated mode of evolution of a trait. Our results call for caution when interpreting analyses of trait evolution, while highlighting the importance of testing a wide range of alternative models. In the light of our findings, we propose that future methodological advances in comparative methods should more explicitly model the intraspecific variability around species mean phenotypes and how it is inherited at speciation.


Assuntos
Evolução Biológica , Especiação Genética , Simulação por Computador , Humanos , Fenótipo , Filogenia
11.
Trends Ecol Evol ; 36(4): 284-293, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33353727

RESUMO

Speciation is frequently initiated but rarely completed, a phenomenon hypothesized to arise due to the failure of nascent lineages to persist. Although a failure to persist often has ecological causes, key gaps exist between ecological and evolutionary theories that, if filled, would clarify when and why speciation succeeds or fails. Here, we apply ecological coexistence theory to show how the alignment between different forms of niche opportunity and niche use shape the initiation, progression, and completion of speciation. Niche evolution may drive coexistence or competitive exclusion, and an ability to coexist ecologically may help or hinder speciation. Our perspective allows progress towards unifying the origin and maintenance of species diversity across the tree of life.

12.
Ecol Lett ; 23(7): 1172-1174, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32419323

RESUMO

The comment by Gamisch (2020) draws the attention of users of the R-package RPANDA (Methods Ecol. Evol., 7, 2016, 589) on situations when properly interpreting the results of linear diversification dependencies requires caution. Here we provide clarifications to help users interpreting their results when using any type of functional diversification dependencies with time or the environment.


Assuntos
Biodiversidade , Especiação Genética , Extinção Biológica , Filogenia , Tempo
13.
Nat Commun ; 11(1): 1527, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235853

RESUMO

Species interactions are widely thought to be strongest in the tropics, potentially contributing to the greater number of species at lower latitudes. Yet, empirical tests of this "biotic interactions" hypothesis remain limited and often provide mixed results. Here, we analyze 55 years of catch per unit effort data from pelagic longline fisheries to estimate the strength of predation exerted by large predatory fish in the world's oceans. We test two central tenets of the biotic interactions hypothesis: that predation is (1) strongest near the equator, and (2) positively correlated with species richness. Counter to these predictions, we find that predation is (1) strongest in or near the temperate zone and (2) negatively correlated with oceanic fish species richness. These patterns suggest that, at least for pelagic fish predation, common assumptions about the latitudinal distribution of species interactions do not apply, thereby challenging a leading explanation for the latitudinal gradient in species diversity.


Assuntos
Peixes/fisiologia , Geografia , Comportamento Predatório/fisiologia , Animais , Biodiversidade , Oceanos e Mares , Filogenia , Especificidade da Espécie , Fatores de Tempo
14.
Mol Biol Evol ; 37(8): 2192-2196, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163146

RESUMO

Understanding why some species accumulate more deleterious substitutions than others is an important question relevant in evolutionary biology and conservation sciences. Previous studies conducted in terrestrial taxa suggest that life history traits correlate with the efficiency of purifying selection and accumulation of deleterious mutations. Using a large genome data set of 76 species of teleostean fishes, we show that species with life history traits associated with vulnerability to fishing have an increased rate of deleterious mutation accumulation (measured via dN/dS, i.e., nonsynonymous over synonymous substitution rate). Our results, focusing on a large clade of aquatic species, generalize previous patterns found so far in few clades of terrestrial vertebrates. These results also show that vulnerable species to fishing inherently accumulate more deleterious substitutions than nonthreatened ones, which illustrates the potential links among population genetics, ecology, and fishing policies to prevent species extinction.


Assuntos
Pesqueiros , Peixes/genética , Características de História de Vida , Acúmulo de Mutações , Animais , Genoma
15.
Ann Bot ; 125(1): 93-103, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31562744

RESUMO

BACKGROUND AND AIMS: The tremendously unbalanced distribution of species richness across clades in the tree of life is often interpreted as the result of variation in the rates of diversification, which may themselves respond to trait evolution. Even though this is likely a widespread pattern, not all diverse groups of organisms exhibit heterogeneity in their dynamics of diversification. Testing and characterizing the processes driving the evolution of clades with steady rates of diversification over long periods of time are of importance in order to have a full understanding of the build-up of biodiversity through time. METHODS: We studied the macroevolutionary history of the species-rich tree fern family Cyatheaceae and inferred a time-calibrated phylogeny of the family including extinct and extant species using the recently developed fossilized birth-death method. We tested whether the high diversity of Cyatheaceae is the result of episodes of rapid diversification associated with phenotypic and ecological differentiation or driven by stable but low rates of diversification. We compared the rates of diversification across clades, modelled the evolution of body size and climatic preferences and tested for trait-dependent diversification. KEY RESULTS: This ancient group diversified at a low and constant rate during its long evolutionary history. Morphological and climatic niche evolution were found to be overall highly conserved, although we detected several shifts in the rates of evolution of climatic preferences, linked to changes in elevation. The diversification of the family occurred gradually, within limited phenotypic and ecological boundaries, and yet resulted in a remarkable species richness. CONCLUSIONS: Our study indicates that Cyatheaceae is a diverse clade which slowly accumulated morphological, ecological and taxonomic diversity over a long evolutionary period and provides a compelling example of the tropics as a museum of biodiversity.


Assuntos
Gleiquênias , Biodiversidade , Evolução Biológica , Ecologia , Especiação Genética , Filogenia
16.
Ecol Lett ; 22(11): 1900-1912, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31486279

RESUMO

Diversification rates vary over time, yet the factors driving these variations remain unclear. Temporal declines in speciation rates have often been interpreted as the effect of ecological limits, competition, and diversity dependence, emphasising the role of biotic factors. Abiotic factors, such as climate change, are also supposed to have affected diversification rates over geological time scales, yet direct tests of these presumed effects have mainly been limited to few clades well represented in the fossil record. If warmer climatic periods have sustained faster speciation, this could explain slowdowns in speciation during the Cenozoic climate cooling. Here, we apply state-of-the art diversity-dependent and temperature-dependent phylogenetic models of diversification to 218 tetrapod families, along with constant rate and time-dependent models. We confirm the prevalence of diversification slowdowns, and find as much support for temperature-dependent than diversity-dependent models. These results call for a better integration of these two processes in studies of diversification dynamics.


Assuntos
Biodiversidade , Especiação Genética , Fósseis , Filogenia , Temperatura
17.
Front Plant Sci ; 10: 864, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396244

RESUMO

The tribe Geonomateae is a widely distributed group of 103 species of Neotropical palms which contains six ecologically important understory or subcanopy genera. Although it has been the focus of many studies, our understanding of the evolutionary history of this group, and in particular of the taxonomically complex genus Geonoma, is far from complete due to a lack of molecular data. Specifically, the previous Sanger sequencing-based studies used a few informative characters and partial sampling. To overcome these limitations, we used a recently developed Arecaceae-specific target capture bait set to undertake a phylogenomic analysis of the tribe Geonomateae. We sequenced 3,988 genomic regions for 85% of the species of the tribe, including 84% of the species of the largest genus, Geonoma. Phylogenetic relationships were inferred using both concatenation and coalescent methods. Overall, our phylogenetic tree is highly supported and congruent with taxonomic delimitations although several morphological taxa were revealed to be non-monophyletic. It is the first time that such a large genomic dataset is provided for an entire tribe within the Arecaceae. Our study lays the groundwork not only for detailed macro- and micro-evolutionary studies within the group, but also sets a workflow for understanding other species complexes across the tree of life.

18.
Syst Biol ; 68(1): 78-92, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931325

RESUMO

New World Monkeys (NWM) (platyrrhines) are one of the most diverse groups of primates, occupying today a wide range of ecosystems in the American tropics and exhibiting large variations in ecology, morphology, and behavior. Although the relationships among the almost 200 living species are relatively well understood, we lack robust estimates of the timing of origin, ancestral morphology, and geographic range evolution of the clade. Herein, we integrate paleontological and molecular evidence to assess the evolutionary dynamics of extinct and extant platyrrhines. We develop novel analytical frameworks to infer the evolution of body mass, changes in latitudinal ranges through time, and species diversification rates using a phylogenetic tree of living and fossil taxa. Our results show that platyrrhines originated 5-10 million years earlier than previously assumed, dating back to the Middle Eocene. The estimated ancestral platyrrhine was small-weighing 0.4 kg-and matched the size of their presumed African ancestors. As the three platyrrhine families diverged, we recover a rapid change in body mass range. During the Miocene Climatic Optimum, fossil diversity peaked and platyrrhines reached their widest latitudinal range, expanding as far South as Patagonia, favored by warm and humid climate and the lower elevation of the Andes. Finally, global cooling and aridification after the middle Miocene triggered a geographic contraction of NWM and increased their extinction rates. These results unveil the full evolutionary trajectory of an iconic and ecologically important radiation of monkeys and showcase the necessity of integrating fossil and molecular data for reliably estimating evolutionary rates and trends.


Assuntos
Clima , Fósseis , Filogenia , Platirrinos/classificação , África , Animais , Platirrinos/anatomia & histologia
19.
BMC Evol Biol ; 18(1): 40, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29592795

RESUMO

BACKGROUND: The ants of the Formica genus are classical model species in evolutionary biology. In particular, Darwin used Formica as model species to better understand the evolution of slave-making, a parasitic behaviour where workers of another species are stolen to exploit their workforce. In his book "On the Origin of Species" (1859), Darwin first hypothesized that slave-making behaviour in Formica evolved in incremental steps from a free-living ancestor. METHODS: The absence of a well-resolved phylogenetic tree of the genus prevent an assessment of whether relationships among Formica subgenera are compatible with this scenario. In this study, we resolve the relationships among the 4 palearctic Formica subgenera (Formica str. s., Coptoformica, Raptiformica and Serviformica) using a phylogenomic dataset of 945 genes for 16 species. RESULTS: We provide a reference tree resolving the relationships among the main Formica subgenera with high bootstrap supports. DISCUSSION: The branching order of our tree suggests that the free-living lifestyle is ancestral in the Formica genus and that parasitic colony founding could have evolved a single time, probably acting as a pre-adaptation to slave-making behaviour. CONCLUSION: This phylogenetic tree provides a solid backbone for future evolutionary studies in the Formica genus and slave-making behaviour.


Assuntos
Formigas/classificação , Formigas/genética , Comportamento Animal , Parasitos/classificação , Parasitos/genética , Filogenia , Comportamento Social , Animais , Regiões Árticas , Especificidade da Espécie , Simbiose
20.
Proc Biol Sci ; 285(1873)2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29467260

RESUMO

The difference between rapid morphological evolutionary changes observed in populations and the long periods of stasis detected in the fossil record has raised a decade-long debate about the exact role played by intraspecific mechanisms at the interspecific level. Although they represent different scales of the same evolutionary process, micro- and macroevolution are rarely studied together and few empirical studies have compared the rates of evolution and the selective pressures between both scales. Here, we analyse morphological, genetic and ecological traits in clownfishes at different evolutionary scales and demonstrate that the tempo of molecular and morphological evolution at the species level can be, to some extent, predicted from parameters estimated below the species level, such as the effective population size or the rate of evolution within populations. We also show that similar codons in the gene of the rhodopsin RH1, a light-sensitive receptor protein, are under positive selection at the intra and interspecific scales, suggesting that similar selective pressures are acting at both levels.


Assuntos
Evolução Biológica , Proteínas de Peixes/genética , Perciformes/anatomia & histologia , Perciformes/genética , Rodopsina/genética , Seleção Genética , Animais , Evolução Molecular , Proteínas de Peixes/metabolismo , Perciformes/fisiologia , Filogenia , Densidade Demográfica , Rodopsina/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...