Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 217, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833740

RESUMO

BACKGROUND: High-throughput sequencing (HTS) technologies completed by the bioinformatic analysis of the generated data are becoming an important detection technique for virus diagnostics. They have the potential to replace or complement the current PCR-based methods thanks to their improved inclusivity and analytical sensitivity, as well as their overall good repeatability and reproducibility. Cross-contamination is a well-known phenomenon in molecular diagnostics and corresponds to the exchange of genetic material between samples. Cross-contamination management was a key drawback during the development of PCR-based detection and is now adequately monitored in routine diagnostics. HTS technologies are facing similar difficulties due to their very high analytical sensitivity. As a single viral read could be detected in millions of sequencing reads, it is mandatory to fix a detection threshold that will be informed by estimated cross-contamination. Cross-contamination monitoring should therefore be a priority when detecting viruses by HTS technologies. RESULTS: We present Cont-ID, a bioinformatic tool designed to check for cross-contamination by analysing the relative abundance of virus sequencing reads identified in sequence metagenomic datasets and their duplication between samples. It can be applied when the samples in a sequencing batch have been processed in parallel in the laboratory and with at least one specific external control called Alien control. Using 273 real datasets, including 68 virus species from different hosts (fruit tree, plant, human) and several library preparation protocols (Ribodepleted total RNA, small RNA and double-stranded RNA), we demonstrated that Cont-ID classifies with high accuracy (91%) viral species detection into (true) infection or (cross) contamination. This classification raises confidence in the detection and facilitates the downstream interpretation and confirmation of the results by prioritising the virus detections that should be confirmed. CONCLUSIONS: Cross-contamination between samples when detecting viruses using HTS (Illumina technology) can be monitored and highlighted by Cont-ID (provided an alien control is present). Cont-ID is based on a flexible methodology relying on the output of bioinformatics analyses of the sequencing reads and considering the contamination pattern specific to each batch of samples. The Cont-ID method is adaptable so that each laboratory can optimise it before its validation and routine use.


Assuntos
RNA Viral , Vírus , Humanos , RNA Viral/análise , RNA Viral/genética , Reprodutibilidade dos Testes , Vírus/genética , Metagenômica/métodos , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Virus Evol ; 9(2): vead053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692897

RESUMO

Cassava Brown Streak Disease (CBSD), which is caused by cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), represents one of the most devastating threats to cassava production in Africa, including in Rwanda where a dramatic epidemic in 2014 dropped cassava yield from 3.3 million to 900,000 tonnes (1). Studying viral genetic diversity at the genome level is essential in disease management, as it can provide valuable information on the origin and dynamics of epidemic events. To fill the current lack of genome-based diversity studies of UCBSV, we performed a nationwide survey of cassava ipomovirus genomic sequences in Rwanda by high-throughput sequencing (HTS) of pools of plants sampled from 130 cassava fields in thirteen cassava-producing districts, spanning seven agro-ecological zones with contrasting climatic conditions and different cassava cultivars. HTS allowed the assembly of a nearly complete consensus genome of UCBSV in twelve districts. The phylogenetic analysis revealed high homology between UCBSV genome sequences, with a maximum of 0.8 per cent divergence between genomes at the nucleotide level. An in-depth investigation based on Single Nucleotide Polymorphisms (SNPs) was conducted to explore the genome diversity beyond the consensus sequences. First, to ensure the validity of the result, a panel of SNPs was confirmed by independent reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing. Furthermore, the combination of fixation index (FST) calculation and Principal Component Analysis (PCA) based on SNP patterns identified three different UCBSV haplotypes geographically clustered. The haplotype 2 (H2) was restricted to the central regions, where the NAROCAS 1 cultivar is predominantly farmed. RT-PCR and Sanger sequencing of individual NAROCAS1 plants confirmed their association with H2. Haplotype 1 was widely spread, with a 100 per cent occurrence in the Eastern region, while Haplotype 3 was only found in the Western region. These haplotypes' associations with specific cultivars or regions would need further confirmation. Our results prove that a much more complex picture of genetic diversity can be deciphered beyond the consensus sequences, with practical implications on virus epidemiology, evolution, and disease management. Our methodology proposes a high-resolution analysis of genome diversity beyond the consensus between and within samples. It can be used at various scales, from individual plants to pooled samples of virus-infected plants. Our findings also showed how subtle genetic differences could be informative on the potential impact of agricultural practices, as the presence and frequency of a virus haplotype could be correlated with the dissemination and adoption of improved cultivars.

3.
PeerJ ; 11: e15816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601254

RESUMO

Recent developments in high-throughput sequencing (HTS) technologies and bioinformatics have drastically changed research in virology, especially for virus discovery. Indeed, proper monitoring of the viral population requires information on the different isolates circulating in the studied area. For this purpose, HTS has greatly facilitated the sequencing of new genomes of detected viruses and their comparison. However, bioinformatics analyses allowing reconstruction of genome sequences and detection of single nucleotide polymorphisms (SNPs) can potentially create bias and has not been widely addressed so far. Therefore, more knowledge is required on the limitations of predicting SNPs based on HTS-generated sequence samples. To address this issue, we compared the ability of 14 plant virology laboratories, each employing a different bioinformatics pipeline, to detect 21 variants of pepino mosaic virus (PepMV) in three samples through large-scale performance testing (PT) using three artificially designed datasets. To evaluate the impact of bioinformatics analyses, they were divided into three key steps: reads pre-processing, virus-isolate identification, and variant calling. Each step was evaluated independently through an original, PT design including discussion and validation between participants at each step. Overall, this work underlines key parameters influencing SNPs detection and proposes recommendations for reliable variant calling for plant viruses. The identification of the closest reference, mapping parameters and manual validation of the detection were recognized as the most impactful analysis steps for the success of the SNPs detections. Strategies to improve the prediction of SNPs are also discussed.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Genoma Viral/genética , Biologia Computacional , Conhecimento
4.
Front Microbiol ; 14: 1181562, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323908

RESUMO

The advances in high-throughput sequencing (HTS) technologies and bioinformatic tools have provided new opportunities for virus and viroid discovery and diagnostics. Hence, new sequences of viral origin are being discovered and published at a previously unseen rate. Therefore, a collective effort was undertaken to write and propose a framework for prioritizing the biological characterization steps needed after discovering a new plant virus to evaluate its impact at different levels. Even though the proposed approach was widely used, a revision of these guidelines was prepared to consider virus discovery and characterization trends and integrate novel approaches and tools recently published or under development. This updated framework is more adapted to the current rate of virus discovery and provides an improved prioritization for filling knowledge and data gaps. It consists of four distinct steps adapted to include a multi-stakeholder feedback loop. Key improvements include better prioritization and organization of the various steps, earlier data sharing among researchers and involved stakeholders, public database screening, and exploitation of genomic information to predict biological properties.

5.
Microorganisms ; 9(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920047

RESUMO

High-throughput sequencing (HTS) technologies have become indispensable tools assisting plant virus diagnostics and research thanks to their ability to detect any plant virus in a sample without prior knowledge. As HTS technologies are heavily relying on bioinformatics analysis of the huge amount of generated sequences, it is of utmost importance that researchers can rely on efficient and reliable bioinformatic tools and can understand the principles, advantages, and disadvantages of the tools used. Here, we present a critical overview of the steps involved in HTS as employed for plant virus detection and virome characterization. We start from sample preparation and nucleic acid extraction as appropriate to the chosen HTS strategy, which is followed by basic data analysis requirements, an extensive overview of the in-depth data processing options, and taxonomic classification of viral sequences detected. By presenting the bioinformatic tools and a detailed overview of the consecutive steps that can be used to implement a well-structured HTS data analysis in an easy and accessible way, this paper is targeted at both beginners and expert scientists engaging in HTS plant virome projects.

6.
Nucleic Acids Res ; 48(D1): D579-D589, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31647104

RESUMO

Large-scale genome sequencing and the increasingly massive use of high-throughput approaches produce a vast amount of new information that completely transforms our understanding of thousands of microbial species. However, despite the development of powerful bioinformatics approaches, full interpretation of the content of these genomes remains a difficult task. Launched in 2005, the MicroScope platform (https://www.genoscope.cns.fr/agc/microscope) has been under continuous development and provides analysis for prokaryotic genome projects together with metabolic network reconstruction and post-genomic experiments allowing users to improve the understanding of gene functions. Here we present new improvements of the MicroScope user interface for genome selection, navigation and expert gene annotation. Automatic functional annotation procedures of the platform have also been updated and we added several new tools for the functional annotation of genes and genomic regions. We finally focus on new tools and pipeline developed to perform comparative analyses on hundreds of genomes based on pangenome graphs. To date, MicroScope contains data for >11 800 microbial genomes, part of which are manually curated and maintained by microbiologists (>4500 personal accounts in September 2019). The platform enables collaborative work in a rich comparative genomic context and improves community-based curation efforts.


Assuntos
Genes Arqueais , Genes Bacterianos , Genômica/métodos , Anotação de Sequência Molecular/métodos , Software , Bases de Dados Genéticas , Redes e Vias Metabólicas
7.
Brief Bioinform ; 20(4): 1071-1084, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28968784

RESUMO

The overwhelming list of new bacterial genomes becoming available on a daily basis makes accurate genome annotation an essential step that ultimately determines the relevance of thousands of genomes stored in public databanks. The MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Starting from the results of our syntactic, functional and relational annotation pipelines, MicroScope provides an integrated environment for the expert annotation and comparative analysis of prokaryotic genomes. It combines tools and graphical interfaces to analyze genomes and to perform the manual curation of gene function in a comparative genomics and metabolic context. In this article, we describe the free-of-charge MicroScope services for the annotation and analysis of microbial (meta)genomes, transcriptomic and re-sequencing data. Then, the functionalities of the platform are presented in a way providing practical guidance and help to the nonspecialists in bioinformatics. Newly integrated analysis tools (i.e. prediction of virulence and resistance genes in bacterial genomes) and original method recently developed (the pan-genome graph representation) are also described. Integrated environments such as MicroScope clearly contribute, through the user community, to help maintaining accurate resources.


Assuntos
Genoma Microbiano , Genômica/métodos , Anotação de Sequência Molecular/métodos , Software , Biologia Computacional , Gráficos por Computador , Sistemas de Gerenciamento de Base de Dados , Bases de Dados de Compostos Químicos , Genômica/estatística & dados numéricos , Internet , Redes e Vias Metabólicas/genética , Fenômenos Microbiológicos , Anotação de Sequência Molecular/estatística & dados numéricos , Interface Usuário-Computador
8.
Nucleic Acids Res ; 45(D1): D517-D528, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899624

RESUMO

The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations.


Assuntos
Bases de Dados Genéticas , Metagenoma , Metagenômica/métodos , Microbiota/genética , Biologia Computacional/métodos , Evolução Molecular , Metaboloma , Metabolômica/métodos , Família Multigênica , Polimorfismo de Nucleotídeo Único , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...