Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
J Biomed Opt ; 29(2): 028001, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38419756

RESUMO

Significance: Radiofrequency ablation (RFA) procedures for atrial fibrillation frequently fail to prevent recurrence, partially due to limitations in assessing extent of ablation. Optical spectroscopy shows promise in assessing RFA lesion formation but has not been validated in conditions resembling those in vivo. Aim: Catheter-based near-infrared spectroscopy (NIRS) was applied to porcine hearts to demonstrate that spectrally derived optical indices remain accurate in blood and at oblique incidence angles. Approach: Porcine left atria were ablated and mapped using a custom-fabricated NIRS catheter. Each atrium was mapped first in phosphate-buffered saline (PBS) then in porcine blood. Results: NIRS measurements showed little angle dependence up to 60 deg. A trained random forest model predicted lesions with a sensitivity of 81.7%, a specificity of 86.1%, and a receiver operating characteristic curve area of 0.921. Predicted lesion maps achieved a mean structural similarity index of 0.749 and a mean normalized inner product of 0.867 when comparing maps obtained in PBS and blood. Conclusions: Catheter-based NIRS can precisely detect RFA lesions on left atria submerged in blood. Optical parameters are reliable in blood and without perpendicular contact, confirming their ability to provide useful feedback during in vivo RFA procedures.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Animais , Suínos , Espectroscopia de Luz Próxima ao Infravermelho , Ablação por Cateter/métodos , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/patologia , Átrios do Coração/cirurgia , Fibrilação Atrial/patologia , Fibrilação Atrial/cirurgia
2.
Sci Adv ; 10(9): eadk0593, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416836

RESUMO

We introduce a climate intervention strategy focused on decreasing water vapor (WV) concentrations near the tropopause and in the stratosphere to increase outbound longwave radiation. The mechanism is the targeted injection of ice-nucleating particles (INP) in air supersaturated with respect to ice at high altitudes in the tropical entryway to the stratosphere. Ice formation in this region is a critical control of stratospheric WV. Recent airborne in situ data indicate that targeting only a small fraction of air parcels in the region would be sufficient to achieve substantial removal of water. This "intentional stratospheric dehydration" (ISD) strategy would not counteract a large fraction of the forcing from carbon dioxide but may contribute to a portfolio of climate interventions by acting with different time and length scales of impact and risk than other interventions that are already under consideration. We outline the idea, its plausibility, technical hurdles, and side effects to be considered.

3.
J Med Imaging (Bellingham) ; 10(6): 061107, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37794884

RESUMO

Purpose: Retinopathy of prematurity (ROP) is a retinal vascular disease affecting premature infants that can culminate in blindness within days if not monitored and treated. A disease stage for scrutiny and administration of treatment within ROP is "plus disease" characterized by increased tortuosity and dilation of posterior retinal blood vessels. The monitoring of ROP occurs via routine imaging, typically using expensive instruments ($50 to $140 K) that are unavailable in low-resource settings at the point of care. Approach: As part of the smartphone-ROP program to enable referrals to expert physicians, fundus images are acquired using smartphone cameras and inexpensive lenses. We developed methods for artificial intelligence determination of plus disease, consisting of a preprocessing pipeline to enhance vessels and harmonize images followed by deep learning classification. A deep learning binary classifier (plus disease versus no plus disease) was developed using GoogLeNet. Results: Vessel contrast was enhanced by 90% after preprocessing as assessed by the contrast improvement index. In an image quality evaluation, preprocessed and original images were evaluated by pediatric ophthalmologists from the US and South America with years of experience diagnosing ROP and plus disease. All participating ophthalmologists agreed or strongly agreed that vessel visibility was improved with preprocessing. Using images from various smartphones, harmonized via preprocessing (e.g., vessel enhancement and size normalization) and augmented in physically reasonable ways (e.g., image rotation), we achieved an area under the ROC curve of 0.9754 for plus disease on a limited dataset. Conclusions: Promising results indicate the potential for developing algorithms and software to facilitate the usage of cell phone images for staging of plus disease.

4.
Front Med Technol ; 5: 1162174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181098

RESUMO

Objective: A medical device must undergo rigorous regulatory processes to verify its safety and effectiveness while in use. In low-and middle-income countries like Uganda however, medical device innovators and designers face challenges around bringing a device from ideation to being market-ready. This is mainly attributed to a lack of clear regulatory procedures among other factors. In this paper, we illustrate the current landscape of investigational medical devices regulation in Uganda. Methods: Information about the different bodies involved in regulation of medical devices in Uganda was obtained online. Nine medical device teams whose devices have gone through the Ugandan regulatory system were interviewed to gain insights into their experiences with the regulatory system. Interviews focused on the challenges they faced, how they navigated them, and factors that supported their progress towards putting their devices on the market. Results: We identified different bodies that are part of the stepwise regulatory pathway of investigational medical devices in Uganda and roles played by each in the regulatory process. Experiences of the medical device teams collected showed that navigation through the regulatory system was different for each team and progress towards market readiness was fuelled by funding, simplicity of device, and mentorship. Conclusion: Medical devices regulation exists in Uganda but is characterised by a landscape that is still in development which thereby affects the progress of investigational medical devices.

5.
Biomed Opt Express ; 14(5): 1945-1958, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37206115

RESUMO

Optical coherence tomography (OCT) has been used to investigate heart development because of its capability to image both structure and function of beating embryonic hearts. Cardiac structure segmentation is a prerequisite for the quantification of embryonic heart motion and function using OCT. Since manual segmentation is time-consuming and labor-intensive, an automatic method is needed to facilitate high-throughput studies. The purpose of this study is to develop an image-processing pipeline to facilitate the segmentation of beating embryonic heart structures from a 4-D OCT dataset. Sequential OCT images were obtained at multiple planes of a beating quail embryonic heart and reassembled to a 4-D dataset using image-based retrospective gating. Multiple image volumes at different time points were selected as key-volumes, and their cardiac structures including myocardium, cardiac jelly, and lumen, were manually labeled. Registration-based data augmentation was used to synthesize additional labeled image volumes by learning transformations between key-volumes and other unlabeled volumes. The synthesized labeled images were then used to train a fully convolutional network (U-Net) for heart structure segmentation. The proposed deep learning-based pipeline achieved high segmentation accuracy with only two labeled image volumes and reduced the time cost of segmenting one 4-D OCT dataset from a week to two hours. Using this method, one could carry out cohort studies that quantify complex cardiac motion and function in developing hearts.

6.
Transl Vis Sci Technol ; 12(3): 25, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36971678

RESUMO

Purpose: The purpose of this work is to determine the sensitivity of phase-decorrelation optical coherence tomography (OCT) to protein aggregation associated with cataracts in the ocular lens, as compared to OCT signal intensity. Methods: Six fresh porcine globes were held at 4°C until cold cataracts developed. As the globes were re-warmed to ambient temperature, reversing the cold cataract, each lens was imaged repeatedly using a conventional OCT system. Throughout each experiment, the internal temperature of the globe was recorded using a needle-mounted thermocouple. OCT scans were acquired, their temporal fluctuations were analyzed, and the rates of decorrelation were spatially mapped. Both decorrelation and intensity were evaluated as a function of recorded temperature. Results: Both signal decorrelation and intensity were found to change with lens temperature, a surrogate of protein aggregation. However, the relationship between signal intensity and temperature was not consistent across different samples. In contrast, the relationship between decorrelation and temperature was found to be consistent across samples. Conclusions: In this study, signal decorrelation was shown to be a more repeatable metric for quantification of crystallin protein aggregation in the ocular lens than OCT intensity-based metrics. Thus, OCT signal decorrelation measurements could enable more detailed and sensitive study of methods to prevent cataract formation. Translational Relevance: This dynamic light scattering-based approach to early cataract assessment can be implemented on existing clinical OCT systems without hardware additions, so it could quickly become part of a clinical study workflow or an indication for use for a pharmaceutical cataract intervention.


Assuntos
Catarata , Cristalino , Animais , Suínos , Tomografia de Coerência Óptica/métodos , Agregados Proteicos , Catarata/diagnóstico , Cristalino/diagnóstico por imagem
7.
Biomed Opt Express ; 14(3): 1228-1242, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950243

RESUMO

Radiofrequency ablation (RFA) is a minimally invasive procedure that is commonly used for the treatment of atrial fibrillation. However, it is associated with a significant risk of arrhythmia recurrence and complications owing to the lack of direct visualization of cardiac substrates and real-time feedback on ablation lesion transmurality. Within this manuscript, we present an automated deep learning framework for in vivo intracardiac optical coherence tomography (OCT) analysis of swine left atria. Our model can accurately identify cardiac substrates, monitor catheter-tissue contact stability, and assess lesion transmurality on both OCT intensity and polarization-sensitive OCT data. To the best of our knowledge, we have developed the first automatic framework for in vivo cardiac OCT analysis, which holds promise for real-time monitoring and guidance of cardiac RFA therapy..

8.
Environ Sci Technol ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607321

RESUMO

Increasing trends in biomass burning emissions significantly impact air quality in North America. Enhanced mixing ratios of ozone (O3) in urban areas during smoke-impacted periods occur through transport of O3 produced within the smoke or through mixing of pyrogenic volatile organic compounds (PVOCs) with urban nitrogen oxides (NOx = NO + NO2) to enhance local O3 production. Here, we analyze a set of detailed chemical measurements, including carbon monoxide (CO), NOx, and speciated volatile organic compounds (VOCs), to evaluate the effects of smoke transported from relatively local and long-range fires on O3 measured at a site in Boulder, Colorado, during summer 2020. Relative to the smoke-free period, CO, background O3, OH reactivity, and total VOCs increased during both the local and long-range smoke periods, but NOx mixing ratios remained approximately constant. These observations are consistent with transport of PVOCs (comprised primarily of oxygenates) but not NOx with the smoke and with the influence of O3 produced within the smoke upwind of the urban area. Box-model calculations show that local O3 production during all three periods was in the NOx-sensitive regime. Consequently, this locally produced O3 was similar in all three periods and was relatively insensitive to the increase in PVOCs. However, calculated NOx sensitivities show that PVOCs substantially increase O3 production in the transition and NOx-saturated (VOC-sensitive) regimes. These results suggest that (1) O3 produced during smoke transport is the main driver for O3 increases in NOx-sensitive urban areas and (2) smoke may cause an additional increase in local O3 production in NOx-saturated (VOC-sensitive) urban areas. Additional detailed VOC and NOx measurements in smoke impacted urban areas are necessary to broadly quantify the effects of wildfire smoke on urban O3 and develop effective mitigation strategies.

9.
Biomed Opt Express ; 13(4): 1801-1819, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519253

RESUMO

Atrial fibrillation (AF) is a rapid irregular electrical activity in the upper chamber and the most common sustained cardiac arrhythmia. Many patients require radiofrequency ablation (RFA) therapy to restore sinus rhythm. Pulmonary vein isolation requires distinguishing normal atrial wall from the pulmonary vein tissue, and atrial substrate ablation requires differentiating scar tissue, fibrosis, and adipose tissue. However, current anatomical mapping methods for strategically locating ablation sites by identifying structural substrates in real-time are limited. An intraoperative tool that accurately provides detailed structural information and classifies endocardial substrates could help improve RF guidance during RF ablation therapy. In this work, we propose a 7F NIRS integrated ablation catheter and demonstrate endocardial mapping on ex vivo swine (n = 12) and human (n = 5) left atrium (LA). First, pulmonary vein (PV) sleeve, fibrosis and ablation lesions were identified with NIRS-derived contrast indices. Based on these key spectral features, classification algorithms identified endocardial substrates with high accuracy (<11% error). Then, a predictive model for lesion depth was evaluated on classified lesions. Model predictions correlated well with histological measurements of lesion dimensions (R = 0.984). Classified endocardial substrates and lesion depth were represented in 2D spatial maps. These results suggest NIRS integrated mapping catheters can serve as a complementary tool to the current electroanatomical mapping system to improve treatment efficacy.

11.
Biomed Opt Express ; 13(11): 5599-5615, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36733755

RESUMO

Of all congenital heart defects (CHDs), anomalies in heart valves and septa are among the most common and contribute about fifty percent to the total burden of CHDs. Progenitors to heart valves and septa are endocardial cushions formed in looping hearts through a multi-step process that includes localized expansion of cardiac jelly, endothelial-to-mesenchymal transition, cell migration and proliferation. To characterize the development of endocardial cushions, previous studies manually measured cushion size or cushion cell density from images obtained using histology, immunohistochemistry, or optical coherence tomography (OCT). Manual methods are time-consuming and labor-intensive, impeding their applications in cohort studies that require large sample sizes. This study presents an automated strategy to rapidly characterize the anatomy of endocardial cushions from OCT images. A two-step deep learning technique was used to detect the location of the heart and segment endocardial cushions. The acellular and cellular cushion regions were then segregated by K-means clustering. The proposed method can quantify cushion development by measuring the cushion volume and cellularized fraction, and also map 3D spatial organization of the acellular and cellular cushion regions. The application of this method to study the developing looping hearts allowed us to discover a spatial asymmetry of the acellular cardiac jelly in endocardial cushions during these critical stages, which has not been reported before.

12.
Sci Rep ; 11(1): 24330, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934120

RESUMO

Radiofrequency ablation (RFA) is commonly used to treat atrial fibrillation (AF). However, the outcome is often compromised due to the lack of direct real-time feedback to assess lesion transmurality. In this work, we evaluated the ability of polarization-sensitive optical coherence tomography (PSOCT) to measure cardiac wall thickness and assess RF lesion transmurality during left atrium (LA) RFA procedures. Quantitative transmural lesion criteria using PSOCT images were determined ex vivo using an integrated PSOCT-RFA catheter and fresh swine hearts. LA wall thickness of living swine was measured with PSOCT and validated with a micrometer after harvesting the heart. A total of 38 point lesions were created in the LA of 5 living swine with the integrated PSOCT-RFA catheter using standard clinical RFA procedures. For all lesions with analyzable PSOCT images, lesion transmurality was assessed with a sensitivity of 89% (17 of 19 tested positive) and a specificity of 100% (5 of 5 tested negative) using the quantitative transmural criteria. This is the first report of using PSOCT to assess LA RFA lesion transmurality in vivo. The results indicate that PSOCT may potentially provide direct real-time feedback for LA wall thickness and lesion transmurality.


Assuntos
Fibrilação Atrial/cirurgia , Átrios do Coração/cirurgia , Ablação por Radiofrequência/métodos , Tomografia de Coerência Óptica/instrumentação , Tomografia de Coerência Óptica/métodos , Animais , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/patologia , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/patologia , Suínos
13.
Sci Adv ; 7(50): eabl3648, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34878847

RESUMO

Wildfires are a substantial but poorly quantified source of tropospheric ozone (O3). Here, to investigate the highly variable O3 chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O3 production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O3 chemistry exhibits rapid transition in chemical regimes. Within a few daylight hours, the O3 formation substantially slows and is largely limited by the abundance of nitrogen oxides (NOx). This finding supports previous observations that O3 formation is enhanced when VOC-rich wildfire smoke mixes into NOx-rich urban plumes, thereby deteriorating urban air quality. Last, we relate O3 chemistry to the underlying fire characteristics, enabling a more accurate representation of wildfire chemistry in atmospheric models that are used to study air quality and predict climate.

14.
Environ Sci Technol ; 55(23): 15646-15657, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34817984

RESUMO

We present a novel method, the Gaussian observational model for edge to center heterogeneity (GOMECH), to quantify the horizontal chemical structure of plumes. GOMECH fits observations of short-lived emissions or products against a long-lived tracer (e.g., CO) to provide relative metrics for the plume width (wi/wCO) and center (bi/wCO). To validate GOMECH, we investigate OH and NO3 oxidation processes in smoke plumes sampled during FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality, a 2019 wildfire smoke study). An analysis of 430 crosswind transects demonstrates that nitrous acid (HONO), a primary source of OH, is narrower than CO (wHONO/wCO = 0.73-0.84 ± 0.01) and maleic anhydride (an OH oxidation product) is enhanced on plume edges (wmaleicanhydride/wCO = 1.06-1.12 ± 0.01). By contrast, NO3 production [P(NO3)] occurs mainly at the plume center (wP(NO3)/wCO = 0.91-1.00 ± 0.01). Phenolic emissions, highly reactive to OH and NO3, are narrower than CO (wphenol/wCO = 0.96 ± 0.03, wcatechol/wCO = 0.91 ± 0.01, and wmethylcatechol/wCO = 0.84 ± 0.01), suggesting that plume edge phenolic losses are the greatest. Yet, nitrophenolic aerosol, their oxidation product, is the greatest at the plume center (wnitrophenolicaerosol/wCO = 0.95 ± 0.02). In a large plume case study, GOMECH suggests that nitrocatechol aerosol is most associated with P(NO3). Last, we corroborate GOMECH with a large eddy simulation model which suggests most (55%) of nitrocatechol is produced through NO3 in our case study.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Biomassa , Fumaça/análise
15.
Biomed Opt Express ; 12(10): 6571-6589, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34745757

RESUMO

Axially swept light-sheet microscopy (ASLM) is an effective method of generating a uniform light sheet across a large field of view (FOV). However, current ASLM designs are more complicated than conventional light-sheet systems, limiting their adaptation in less experienced labs. By eliminating difficult-to-align components and reducing the total number of components, we show that high-performance ASLM can be accomplished much simpler than existing designs, requiring less expertise and effort to construct, align, and operate. Despite the high simplicity, our design achieved 3.5-µm uniform optical sectioning across a >6-mm FOV, surpassing existing light-sheet designs with similar optical sectioning. With well-corrected chromatic aberration, multi-channel fluorescence imaging can be performed without realignment. This manuscript provides a comprehensive tutorial on building the system and demonstrates the imaging performance with optically cleared whole-mount tissue samples.

16.
Transl Vis Sci Technol ; 10(5): 8, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34328498

RESUMO

Crosslinking involves the formation of bonds between polymer chains, such as proteins. In biological tissues, these bonds tend to stiffen the tissue, making it more resistant to mechanical degradation and deformation. In ophthalmology, the crosslinking phenomenon is being increasingly harnessed and explored as a treatment strategy for treating corneal ectasias, keratitis, degenerative myopia, and glaucoma. This review surveys the multitude of exogenous crosslinking strategies reported in the literature, both "light" (involving light energy) and "dark" (involving non-photic chemical processes), and explores their mechanisms, cytotoxicity, and stage of translational development. The spectrum of ophthalmic applications described in the literature is then discussed, with particular attention to proposed therapeutic mechanisms in the cornea and sclera. The mechanical effects of crosslinking are then discussed in the context of their proposed site and scale of action. Biomechanical characterization of the crosslinking effect is needed to more thoroughly address knowledge gaps in this area, and a review of reported methods for biomechanical characterization is presented with an attempt to assess the sensitivity of each method to crosslinking-mediated changes using data from the experimental and clinical literature. Biomechanical measurement methods differ in spatial resolution, mechanical sensitivity, suitability for detecting crosslinking subtypes, and translational readiness and are central to the effort to understand the mechanistic link between crosslinking methods and clinical outcomes of candidate therapies. Data on differences in the biomechanical effect of different crosslinking protocols and their correspondence to clinical outcomes are reviewed, and strategies for leveraging measurement advances predicting clinical outcomes of crosslinking procedures are discussed. Advancing the understanding of ophthalmic crosslinking, its biomechanical underpinnings, and its applications supports the development of next-generation crosslinking procedures that optimize therapeutic effect while reducing complications.


Assuntos
Córnea , Ceratite , Fenômenos Biomecânicos , Reagentes de Ligações Cruzadas , Humanos , Esclera
17.
Am J Physiol Heart Circ Physiol ; 321(2): H294-H305, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34142884

RESUMO

The etiology of ethanol-related congenital heart defects has been the focus of much study, but most research has concentrated on cellular and molecular mechanisms. We have shown with optical coherence tomography (OCT) that ethanol exposure led to increased retrograde flow and smaller atrioventricular (AV) cushions compared with controls. Since AV cushions play a role in patterning the conduction delay at the atrioventricular junction (AVJ), this study aims to investigate whether ethanol exposure alters the AVJ conduction in early looping hearts and whether this alteration is related to the decreased cushion size. Quail embryos were exposed to a single dose of ethanol at gastrulation, and Hamburger-Hamilton stage 19-20 hearts were dissected for imaging. Cardiac conduction was measured using an optical mapping microscope and we imaged the endocardial cushions using OCT. Our results showed that, compared with controls, ethanol-exposed embryos exhibited abnormally fast AVJ conduction and reduced cushion size. However, this increased conduction velocity (CV) did not strictly correlate with decreased cushion volume and thickness. By matching the CV map to the cushion-size map along the inflow heart tube, we found that the slowest conduction location was consistently at the atrial side of the AVJ, which had the thinner cushions, not at the thickest cushion location at the ventricular side as expected. Our findings reveal regional differences in the AVJ myocardium even at this early stage in heart development. These findings reveal the early steps leading to the heterogeneity and complexity of conduction at the mature AVJ, a site where arrhythmias can be initiated.NEW & NOTEWORTHY To the best of our knowledge, this is the first study investigating the impact of ethanol exposure on the early cardiac conduction system. Our results showed that ethanol-exposed embryos exhibited abnormally fast atrioventricular conduction. In addition, our findings, in CV measurements and endocardial cushion thickness, reveal regional differences in the AVJ myocardium even at this early stage in heart development, suggesting that the differentiation and maturation at this site are complex and warrant further studies.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Coxins Endocárdicos/efeitos dos fármacos , Etanol/farmacologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Animais , Embrião não Mamífero , Coxins Endocárdicos/diagnóstico por imagem , Coxins Endocárdicos/embriologia , Gastrulação , Coração/diagnóstico por imagem , Coração/efeitos dos fármacos , Coração/embriologia , Sistema de Condução Cardíaco/diagnóstico por imagem , Sistema de Condução Cardíaco/embriologia , Codorniz , Tomografia de Coerência Óptica , Imagens com Corantes Sensíveis à Voltagem
18.
Commun Biol ; 4(1): 334, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712728

RESUMO

Smartphone microscopes can be useful tools for a broad range of imaging applications. This manuscript demonstrates the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone. It enables high-quality multichannel fluorescence microscopy with submicron resolution over a 10× equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable, and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


Assuntos
Microscopia de Fluorescência/instrumentação , Aplicativos Móveis , Smartphone , Animais , Bactérias , Desenho de Equipamento , Imunofluorescência , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Mucosa Bucal , Plantas , Reprodutibilidade dos Testes , Manejo de Espécimes , Coloração e Rotulagem
19.
Alcohol Clin Exp Res ; 45(1): 69-78, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206417

RESUMO

BACKGROUND: Fetal alcohol spectrum disorder (FASD) is caused by prenatal alcohol exposure (PAE), the intake of ethanol (C2 H5 OH) during pregnancy. Features of FASD cover a range of structural and functional defects including congenital heart defects (CHDs). Folic acid and choline, contributors of methyl groups to one-carbon metabolism (OCM), prevent CHDs in humans. Using our avian model of FASD, we have previously reported that betaine, another methyl donor downstream of choline, prevents CHDs. The CHD preventions are substantial but incomplete. Ethanol causes oxidative stress as well as depleting methyl groups for OCM to support DNA methylation and other epigenetic alterations. To identify more compounds that can safely and effectively prevent CHDs and other effects of PAE, we tested glutathione (GSH), a compound that regulates OCM and is known as a "master antioxidant." METHODS/RESULTS: Quail embryos injected with a single dose of ethanol at gastrulation exhibited congenital defects including CHDs similar to those identified in FASD individuals. GSH injected simultaneously with ethanol not only prevented CHDs, but also improved survival and prevented other PAE-induced defects. Assays of hearts at 8 days (HH stage 34) of quail development, when the heart normally has developed 4-chambers, showed that this single dose of PAE reduced global DNA methylation. GSH supplementation concurrent with PAE normalized global DNA methylation levels. The same assays performed on quail hearts at 3 days (HH stage 19-20) of development, showed no difference in global DNA methylation between controls, ethanol-treated, GSH alone, and GSH plus ethanol-treated cohorts. CONCLUSIONS: GSH supplementation shows promise to inhibit effects of PAE by improving survival, reducing the incidence of morphological defects including CHDs, and preventing global hypomethylation of DNA in heart tissues.


Assuntos
Metilação de DNA/efeitos dos fármacos , Transtornos do Espectro Alcoólico Fetal/prevenção & controle , Glutationa/uso terapêutico , Cardiopatias Congênitas/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Depressores do Sistema Nervoso Central/efeitos adversos , Avaliação Pré-Clínica de Medicamentos , Etanol/efeitos adversos , Feminino , Glutationa/farmacologia , Cardiopatias Congênitas/induzido quimicamente , Gravidez , Codorniz
20.
Invest Ophthalmol Vis Sci ; 61(13): 10, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33151279

RESUMO

Purpose: Millions of people suffer from diseases that involve corneal nerve dysfunction, caused by various conditions, including dry eye syndrome, neurotrophic keratopathy, diabetes, herpes simplex, glaucoma, and Alzheimer's disease. The morphology of corneal nerves has been studied extensively. However, corneal nerve function has only been studied in a limited fashion owing to a lack of tools. Here, we present a new system for studying corneal nerve function. Methods: Optical imaging was performed on the cornea of excised murine globes taken from a model animal expressing a genetically encoded calcium indicator, GCaMP6f, to record calcium transients. A custom perfusion and imaging chamber for ex vivo murine globes was designed to maintain and stabilize the cornea, while allowing the introduction of chemical stimulation during imaging. Results: Imaging of calcium signals in the ex vivo murine cornea was demonstrated. Strong calcium signals with minimal photobleaching were observed in experiments lasting up to 10 minutes. Concentrated potassium and lidocaine solutions both modulated corneal nerve activity. Similar responses were observed in the same neurons across multiple chemical stimulations, suggesting the feasibility of using chemical stimulations to test the response of the corneal nerves. Conclusions: Our studies suggest that this tool will be of great use for studying functional changes to corneal nerves in response to disease and ocular procedures. This process will enable preclinical testing of new ocular procedures to minimize damage to corneal innervation and therapies for diminished neural function.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Córnea/inervação , Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/genética , Nervo Oftálmico/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...