Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 98(6): 1098-1105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33428853

RESUMO

PURPOSE: Radiation exposure of crickets during their fourth juvenile molt inflicted ionizing radiation damage and altered growth rate, adult size at sexual maturity. High levels of ionizing radiation also impacted the subsequent generation, likely via heritable epigenetic mechanisms. Using radiation as a proxy for external stress, we aim to understand the transgenerational impacts of stress on non-irradiated offspring. METHODS AND MATERIALS: We assess the impacts of ionizing radiation on maturation mass and growth rate in F0 male and female house crickets (Acheta domesticus). We also assessed trans-generational impacts of irradiation on growth rate and maturation mass on non-irradiated offspring of irradiated parents compared to non-irradiated controls. RESULTS: Early-life exposure to high levels of ionizing radiation-induced lower growth rate and maturation mass compared to controls (p < .0001). Non-irradiated male F1 offspring of irradiated parents demonstrated significantly lower mass at maturation (p = .0012) and significantly faster time of maturation (p < .0001) compared to F1 non-irradiated controls. CONCLUSION: Our results show that a single early-life exposure to ionizing radiation can alter male offspring development through accelerated maturation and reduced maturation mass.


Assuntos
Gryllidae , Exposição à Radiação , Animais , Epigênese Genética , Feminino , Masculino , Radiação Ionizante
2.
Geroscience ; 43(4): 1935-1946, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33864227

RESUMO

Aging is associated with changes in regulation, particularly among diverse regulators in the brain. We assayed prominent regulatory elements in mouse brain to explore their relationship to one another, stress, and aging. Notably, unphosphorylated (activated) forkhead transcription factor 3a (uFOXO3a) expressed exponential decline congruent with increasing age-related mortality. Decline in uFOXO3a would impact homeostasis, aging rate, stress resistance, and mortality. We also examined other regulators associated with aging and FOXO3a: protein kinase B (PKB), the mechanistic target of rapamycin (mTOR), 70 kDa ribosomal S6 kinase (P70S6K), and 5' AMP-activated protein kinase (AMPK). It would require powerful regulatory distortion, conflicting tradeoffs and/or significant damage to inflict exponential decline of a transcription factor as crucial as FOXO3a. No other regulator examined expressed an exponential pattern congruent with aging. PKB was strongly associated with decreases in uFOXO3a, but the aging pattern of PKB did not support a causal linkage. Although mTOR expressed a trend for age-related increase, this was not significant. We considered that the mTOR downstream element, P70S6K, might suppress FOXO3a, but remarkably, it expressed a strong positive association. The age-related pattern of AMPK was also incompatible. Literature suggested the immunological regulator NFĸB (nuclear factor kappa-light-chain-enhancer of activated B cells) increases with age and suppresses FOXO3a. This would inhibit apoptosis, autophagy, mitophagy, proteostasis, detoxification, antioxidants, chaperones, and DNA repair, thus exacerbating aging. We conclude that a key aspect of aging involves distortion of key regulators in the brain.


Assuntos
Proteínas Quinases Ativadas por AMP , Apoptose , Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento , Animais , Encéfalo/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Camundongos
3.
Environ Mol Mutagen ; 57(5): 382-404, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27199101

RESUMO

Transgenic growth hormone mice (TGM) are a recognized model of accelerated aging with characteristics including chronic oxidative stress, reduced longevity, mitochondrial dysfunction, insulin resistance, muscle wasting, and elevated inflammatory processes. Growth hormone/IGF-1 activate the Target of Rapamycin known to promote aging. TGM particularly express severe cognitive decline. We previously reported that a multi-ingredient dietary supplement (MDS) designed to offset five mechanisms associated with aging extended longevity, ameliorated cognitive deterioration and significantly reduced age-related physical deterioration in both normal mice and TGM. Here we report that TGM lose more than 50% of cells in midbrain regions, including the cerebellum and olfactory bulb. This is comparable to severe Alzheimer's disease and likely explains their striking age-related cognitive impairment. We also demonstrate that the MDS completely abrogates this severe brain cell loss, reverses cognitive decline and augments sensory and motor function in aged mice. Additionally, histological examination of retinal structure revealed markers consistent with higher numbers of photoreceptor cells in aging and supplemented mice. We know of no other treatment with such efficacy, highlighting the potential for prevention or amelioration of human neuropathologies that are similarly associated with oxidative stress, inflammation and cellular dysfunction. Environ. Mol. Mutagen. 57:382-404, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Envelhecimento/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Suplementos Nutricionais , Neurônios/efeitos dos fármacos , Neurônios/patologia , Sensação/efeitos dos fármacos , Envelhecimento/patologia , Animais , Apoptose/efeitos dos fármacos , Atrofia , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Feminino , Hormônio do Crescimento/genética , Longevidade/efeitos dos fármacos , Masculino , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos
4.
Neuroscience ; 308: 180-93, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26358368

RESUMO

Severe chronic stress can have a profoundly negative impact on the brain, affecting plasticity, neurogenesis, memory and mood. On the other hand, there are factors that upregulate neurogenesis, which include dietary antioxidants and physical activity. These factors are associated with biochemical processes that are also altered in age-related cognitive decline and dementia, such as neurotrophin expression, oxidative stress and inflammation. We exposed mice to an unpredictable series of stressors or left them undisturbed (controls). Subsets of stressed and control mice were concurrently given (1) no additional treatment, (2) a complex dietary supplement (CDS) designed to ameliorate inflammation, oxidative stress, mitochondrial dysfunction, insulin resistance and membrane integrity, (3) a running wheel in each of their home cages that permitted them to exercise, or (4) both the CDS and the running wheel for exercise. Four weeks of unpredictable stress reduced the animals' preference for saccharin, increased their adrenal weights and abolished the exercise-induced upregulation of neurogenesis that was observed in non-stressed animals. Unexpectedly, stress did not reduce hippocampal size, brain-derived neurotrophic factor (BDNF), or neurogenesis. The combination of dietary supplementation and exercise had multiple beneficial effects, as reflected in the number of doublecortin (DCX)-positive immature neurons in the dentate gyrus (DG), the sectional area of the DG and hippocampal CA1, as well as increased hippocampal BDNF messenger ribonucleic acid (mRNA) and serum vascular endothelial growth factor (VEGF) levels. In contrast, these benefits were not observed in chronically stressed animals exposed to either dietary supplementation or exercise alone. These findings could have important clinical implications for those suffering from chronic stress-related disorders such as major depression.


Assuntos
Suplementos Nutricionais , Hipocampo/fisiopatologia , Corrida/fisiologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/terapia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doença Crônica , Transtorno Depressivo/patologia , Transtorno Depressivo/fisiopatologia , Transtorno Depressivo/terapia , Dieta , Modelos Animais de Doenças , Proteína Duplacortina , Hipocampo/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Tamanho do Órgão , Condicionamento Físico Animal/fisiologia , Estresse Psicológico/patologia , Resultado do Tratamento , Incerteza , Fator A de Crescimento do Endotélio Vascular/sangue
5.
Mutagenesis ; 23(6): 473-82, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18644833

RESUMO

Transgenic growth hormone (Tg) mice express elevated free radical processes and a progeroid syndrome of accelerated ageing. We examined bone marrow cells of Tg mice and their normal (Nr) siblings for three markers of DNA damage and assessed the impact of free radical stress using ionizing radiation. We also evaluated the radiation protection afforded by a dietary supplement that we previously demonstrated to extend longevity and reduce cognitive ageing of Nr and Tg mice. Spectral karyotyping revealed few spontaneous chromosomal aberrations in Nr or Tg. Tg mice, however, had significantly greater constitutive levels of both gammaH2AX and 8-hydroxy-deoxyguanosine (8-OHdG) compared to Nr. When exposed to a 2-Gy whole-body dose of ionizing radiation, both Nr and Tg mice showed significant increases in DNA damage. Compared to Nr mice, irradiated Tg mice had dramatically higher levels of gammaH2AX foci and double the levels of chromosomal aberrations. In unirradiated mice, the dietary supplement significantly reduced constitutive gammaH2AX and 8-OHdG in both Nr and Tg mice (normalizing both gammaH2AX and 8-OHdG in Tg), with little difference in gammaH2AX and 8-OHdG over constitutive levels. Induced chromosomal aberrations were also reduced, and in Nr mice, virtually absent. Remarkably, supplemented mice expressed 6-fold lower levels of radiation-induced chromosomal aberrations compared to unsupplemented Nr or Tg mice. Based on our data, the dietary supplement appeared to scavenge free radicals before they could cause damage. This study validates Tg mice as an exemplary model of oxidative stress and radiation hypersensitivity and documents unprecedented radioprotection by a dietary supplement comprised of ingredients available to the general public.


Assuntos
Dano ao DNA , Suplementos Nutricionais , Estresse Oxidativo/fisiologia , Radiação Ionizante , 8-Hidroxi-2'-Desoxiguanosina , Animais , Aberrações Cromossômicas , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência
6.
Exp Biol Med (Maywood) ; 228(7): 800-10, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12876299

RESUMO

We previously found that transgenic mice overexpressing growth hormone (TGM) have elevated and progressively increasing free radical processes in brain that strongly correlates with reduced survivorship. Young mature TGM, however, displayed vastly enhanced learning of an eight-choice cued maze and qualitatively different learning curves than normal controls. Here we document the age-related patterns in learning ability of TGM and normal mice. Learning appeared inferior in both genotypes of very young mice but TGM were confirmed to be superior to normal mice upon maturity. Older TGM, however, showed rapid age-related loss of their exceptional learning, whereas normal mice at 1 year of age showed little change. The cognitive decline of TGM was abolished by a complex "anti-aging" dietary supplement formulated to promote membrane and mitochondrial integrity, increase insulin sensitivity, reduce reactive oxygen and nitrogen species, and ameliorate inflammation. Results are discussed in the context of reactive oxygen and nitrogen species, long-term potentiation, learning, aging and neuropathology, based on known impacts of the growth hormone axis on the brain, and characteristics of TGM.


Assuntos
Envelhecimento/fisiologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Suplementos Nutricionais , Radicais Livres/metabolismo , Vitaminas/administração & dosagem , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Feminino , Hormônio do Crescimento/metabolismo , Resistência à Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Transdução de Sinais
7.
Am J Physiol Regul Integr Comp Physiol ; 282(1): R70-6, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11742825

RESUMO

The effects of chronic excess of growth hormone (GH) on sleep-wake activity was determined in giant transgenic mice in which the metallothionein-1 promoter stimulates the expression of rat GH (MT-rGH mice) and in their normal littermates. In the MT-rGH mice, the time spent in spontaneous non-rapid eye movement sleep (NREMS) was enhanced moderately, and rapid eye movement sleep (REMS) time increased greatly during the light period. After a 12-h sleep deprivation, the MT-rGH mice continued to sleep more than the normal mice, but there were no differences in the increments in NREMS, REMS, and electroencephalogram (EEG) slow-wave activity (SWA) during NREMS between the two groups. Injection of the somatostatin analog octreotide elicited a prompt sleep suppression followed by increases in SWA during NREMS in normal mice. These changes were attenuated in the MT-rGH mice. The decreased responsiveness to octreotide is explained by a chronic suppression of hypothalamic GH-releasing hormone in the MT-rGH mice. Enhancements in spontaneous REMS are attributed to the REMS-promoting activity of GH. The increases in spontaneous NREMS are, however, not consistent with our current understanding of the role of somatotropic hormones in sleep regulation. Metabolic, neurotransmitter, or hormonal changes associated with chronic GH excess may indirectly influence sleep.


Assuntos
Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Privação do Sono/fisiopatologia , Sono REM/fisiologia , Animais , Eletroencefalografia , Feminino , Hormônios/farmacologia , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Octreotida/farmacologia , Sono REM/efeitos dos fármacos
8.
Trends Ecol Evol ; 11(5): 219, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-21237814
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...