Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Neurosci Biobehav Rev ; 160: 105650, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574782

RESUMO

ROLLS, E. T. Two What, Two Where, Visual Cortical Streams in Humans. NEUROSCI BIOBEHAV REV 2024. Recent cortical connectivity investigations lead to new concepts about 'What' and 'Where' visual cortical streams in humans, and how they connect to other cortical systems. A ventrolateral 'What' visual stream leads to the inferior temporal visual cortex for object and face identity, and provides 'What' information to the hippocampal episodic memory system, the anterior temporal lobe semantic system, and the orbitofrontal cortex emotion system. A superior temporal sulcus (STS) 'What' visual stream utilising connectivity from the temporal and parietal visual cortex responds to moving objects and faces, and face expression, and connects to the orbitofrontal cortex for emotion and social behaviour. A ventromedial 'Where' visual stream builds feature combinations for scenes, and provides 'Where' inputs via the parahippocampal scene area to the hippocampal episodic memory system that are also useful for landmark-based navigation. The dorsal 'Where' visual pathway to the parietal cortex provides for actions in space, but also provides coordinate transforms to provide inputs to the parahippocampal scene area for self-motion update of locations in scenes in the dark or when the view is obscured.


Assuntos
Lobo Temporal , Córtex Visual , Humanos , Lobo Parietal , Vias Visuais , Emoções
2.
Biol Psychiatry ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38199582

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) interacts with psychopathology in a complex way; however, little is known about the underlying brain, biochemical, and genetic mechanisms. METHODS: To clarify the phenotypic and genetic associations between IBS and brain health, we performed a comprehensive retrospective cohort study on a large population. Our study included 171,104 participants from the UK Biobank who underwent a thorough assessment of IBS, with the majority also providing neuroimaging, behavioral, biochemical, and genetic information. Multistage linked analyses were conducted, including phenome-wide association analysis, polygenic risk score calculation, and 2-sample Mendelian randomization analysis. RESULTS: The phenome-wide association analysis showed that IBS was linked to brain health problems, including anxiety and depression, and poor cognitive performance. Significantly lower brain volumes associated with more severe IBS were found in key areas related to emotional regulation and higher-order cognition, including the medial orbitofrontal cortex/ventromedial prefrontal cortex, anterior insula, anterior and mid-cingulate cortices, dorsolateral prefrontal cortex, and hippocampus. Higher triglycerides, lower high-intensity lipoprotein, and lower platelets were also related (p < 1 × 10-10) to more severe IBS. Finally, Mendelian randomization analyses demonstrated potential causal relationships between IBS and brain health and indicated possible mediating effects of dyslipidemia and inflammation. CONCLUSIONS: For the first time, this study provides a comprehensive understanding of the relationship between IBS and brain health phenotypes, integrating perspectives from neuroimaging, behavioral performance, biochemical factors, and genetics, which is of great significance for clinical applications to potentially address brain health impairments in patients with IBS.

3.
Mol Psychiatry ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212376

RESUMO

We describe evidence for dissociable roles of the medial and lateral orbitofrontal cortex (OFC) in major depressive disorder (MDD) from structure, functional activation, functional connectivity, metabolism, and neurochemical systems. The reward-related medial orbitofrontal cortex has lower connectivity and less reward sensitivity in MDD associated with anhedonia symptoms; and the non-reward related lateral OFC has higher functional connectivity and more sensitivity to non-reward/aversive stimuli in MDD associated with negative bias symptoms. Importantly, we propose that conventional antidepressants act to normalize the hyperactive lateral (but not medial) OFC to reduce negative bias in MDD; while other treatments are needed to operate on the medial OFC to reduce anhedonia, with emerging evidence suggesting that ketamine may act in this way. The orbitofrontal cortex is the key cortical region in emotion and reward, and the current review presents much new evidence about the different ways that the medial and lateral OFC are involved in MDD.

4.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991264

RESUMO

The frontal pole is implicated in humans in whether to exploit resources versus explore alternatives. Effective connectivity, functional connectivity, and tractography were measured between six human frontal pole regions and for comparison 13 dorsolateral and dorsal prefrontal cortex regions, and the 360 cortical regions in the Human Connectome Project Multi-modal-parcellation atlas in 171 HCP participants. The frontal pole regions have effective connectivity with Dorsolateral Prefrontal Cortex regions, the Dorsal Prefrontal Cortex, both implicated in working memory; and with the orbitofrontal and anterior cingulate cortex reward/non-reward system. There is also connectivity with temporal lobe, inferior parietal, and posterior cingulate regions. Given this new connectivity evidence, and evidence from activations and damage, it is proposed that the frontal pole cortex contains autoassociation attractor networks that are normally stable in a short-term memory state, and maintain stability in the other prefrontal networks during stable exploitation of goals and strategies. However, if an input from the orbitofrontal or anterior cingulate cortex that expected reward, non-reward, or punishment is received, this destabilizes the frontal pole and thereby other prefrontal networks to enable exploration of competing alternative goals and strategies. The frontal pole connectivity with reward systems may be key in exploit versus explore.


Assuntos
Conectoma , Lobo Parietal , Humanos , Imageamento por Ressonância Magnética , Lobo Frontal/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Temporal
5.
Brain Struct Funct ; 229(1): 47-61, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37861743

RESUMO

Sex differences in human brain structure and function are important, partly because they are likely to be relevant to the male-female differences in behavior and in mental health. To analyse sex differences in cortical function, functional connectivity was measured in 36,531 participants (53% female) in the UK Biobank (mean age 69) using the Human Connectome Project multimodal parcellation atlas with 360 well-specified cortical regions. Most of the functional connectivities were lower in females (Bonferroni corrected), with the mean Cohen's d = - 0.18. Removing these as covariates reduced the difference of functional connectivities for females-males from d = - 0.18 to - 0.06. The lower functional connectivities in females were especially of somatosensory/premotor regions including the insula, opercular cortex, paracentral lobule and mid-cingulate cortex, and were correlated with lower maximum workload (r = 0.17), and with higher whole body fat mass (r = - 0.17). But some functional connectivities were higher in females, involving especially the ventromedial prefrontal cortex and posterior cingulate cortex, and these were correlated with higher liking for some rewards such as sweet foods, higher happiness/subjective well-being, and with better memory-related functions. The main findings were replicated in 1000 individuals (532 females, mean age 29) from the Human Connectome Project. This investigation shows the cortical systems with different functional connectivity between females and males, and also provides for the first time a foundation for understanding the implications for behavior of these differences between females and males.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Idoso , Adulto , Encéfalo , Recompensa , Composição Corporal
6.
Cereb Cortex ; 33(20): 10686-10701, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689834

RESUMO

The hierarchical organization between 25 ventral stream visual cortical regions and 180 cortical regions was measured with magnetoencephalography using the Human Connectome Project Multimodal Parcellation atlas in 83 Human Connectome Project participants performing a visual memory task. The aim was to reveal the hierarchical organization using a whole-brain model based on generative effective connectivity with this fast neuroimaging method. V1-V4 formed a first group of interconnected regions. Especially V4 had connectivity to a ventrolateral visual stream: V8, the fusiform face cortex, and posterior inferior temporal cortex PIT. These regions in turn had effectivity connectivity to inferior temporal cortex visual regions TE2p and TE1p. TE2p and TE1p then have connectivity to anterior temporal lobe regions TE1a, TE1m, TE2a, and TGv, which are multimodal. In a ventromedial visual stream, V1-V4 connect to ventromedial regions VMV1-3 and VVC. VMV1-3 and VVC connect to the medial parahippocampal gyrus PHA1-3, which, with the VMV regions, include the parahippocampal scene area. The medial parahippocampal PHA1-3 regions have connectivity to the hippocampal system regions the perirhinal cortex, entorhinal cortex, and hippocampus. These effective connectivities of two ventral visual cortical streams measured with magnetoencephalography provide support to the hierarchical organization of brain systems measured with fMRI, and new evidence on directionality.


Assuntos
Magnetoencefalografia , Lobo Temporal , Humanos , Lobo Temporal/diagnóstico por imagem , Hipocampo , Giro Para-Hipocampal , Córtex Entorrinal , Imageamento por Ressonância Magnética
7.
Elife ; 122023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37399053

RESUMO

Close friendships are important for mental health and cognition in late childhood. However, whether the more close friends the better, and the underlying neurobiological mechanisms are unknown. Using the Adolescent Brain Cognitive Developmental study, we identified nonlinear associations between the number of close friends, mental health, cognition, and brain structure. Although few close friends were associated with poor mental health, low cognitive functions, and small areas of the social brain (e.g., the orbitofrontal cortex, the anterior cingulate cortex, the anterior insula, and the temporoparietal junction), increasing the number of close friends beyond a level (around 5) was no longer associated with better mental health and larger cortical areas, and was even related to lower cognition. In children having no more than five close friends, the cortical areas related to the number of close friends revealed correlations with the density of µ-opioid receptors and the expression of OPRM1 and OPRK1 genes, and could partly mediate the association between the number of close friends, attention-deficit/hyperactivity disorder (ADHD) symptoms, and crystalized intelligence. Longitudinal analyses showed that both too few and too many close friends at baseline were associated with more ADHD symptoms and lower crystalized intelligence 2 y later. Additionally, we found that friendship network size was nonlinearly associated with well-being and academic performance in an independent social network dataset of middle-school students. These findings challenge the traditional idea of 'the more, the better,' and provide insights into potential brain and molecular mechanisms.


Close friendships are crucial during the transition from late childhood to adolescence as children become more independent from their parents and influenced by their peers. The brain undergoes a tremendous amount of development during this period, and it is also a time when mental health disorders often begin to emerge. Scientists are still learning about how friendships shape brain development and mental health during this transition. Maintaining friendships takes time and mental resources so there may be limits on how many friends are beneficial. Here, Shen, Rolls et al. show that the having more friends is not always directly related to better mental health and cognitive abilities. In the study, Shen, Rolls et al. analyzed data from nearly 7,500 young people between around 10 to 12 years old: this included, their number of close friends, their mental health and cognitive abilities such as working memory, attention and processing speed, and images of their brains. Data from a second set of about 16,000 young people were then analyzed to confirm the results. Shen, Rolls et al. found having a higher number of close friends was associated with improved mental health and cognitive ability. However, this association stopped once around five friends had been reached, after which having more friends was no longer linked to better mental health and was even correlated with lower cognition. Additionally, individuals with too few or too many friends had more symptoms of Attention-deficit/hyperactivity disorder (ADHD) and were less able to learn from their experiences. This non-linear relationship between number of friends and mental health and cognitive abilities can be partly explained by the structure of the brain. Shen, Rolls et al. found that brain regions associated with friendship were larger in individuals with more close friends, but did not increase any further once the number of friends a person had exceeded five individuals with around five close friends also had more of a receptor that is part of the opioid system, which may make them more responsive to laughter, friendly touch, or other positive social interactions. These findings challenge the idea that having more friends is always better. It also provides insights into how friendships affect brain health during the transition from late childhood to adolescence. Insights from this study may aid the development of interventions to support healthy brain development during youth.


Assuntos
Amigos , Saúde Mental , Adolescente , Humanos , Criança , Amigos/psicologia , Grupo Associado , Cognição , Encéfalo
8.
Brain Struct Funct ; 228(5): 1201-1257, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37178232

RESUMO

The orbitofrontal cortex and amygdala are involved in emotion and in motivation, but the relationship between these functions performed by these brain structures is not clear. To address this, a unified theory of emotion and motivation is described in which motivational states are states in which instrumental goal-directed actions are performed to obtain rewards or avoid punishers, and emotional states are states that are elicited when the reward or punisher is or is not received. This greatly simplifies our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as sweet taste or pain. Recent evidence on the connectivity of human brain systems involved in emotion and motivation indicates that the orbitofrontal cortex is involved in reward value and experienced emotion with outputs to cortical regions including those involved in language, and is a key brain region involved in depression and the associated changes in motivation. The amygdala has weak effective connectivity back to the cortex in humans, and is implicated in brainstem-mediated responses to stimuli such as freezing and autonomic activity, rather than in declarative emotion. The anterior cingulate cortex is involved in learning actions to obtain rewards, and with the orbitofrontal cortex and ventromedial prefrontal cortex in providing the goals for navigation and in reward-related effects on memory consolidation mediated partly via the cholinergic system.


Assuntos
Giro do Cíngulo , Motivação , Humanos , Giro do Cíngulo/fisiologia , Emoções/fisiologia , Tonsila do Cerebelo/fisiologia , Córtex Pré-Frontal/fisiologia , Recompensa
9.
Hippocampus ; 33(5): 667-687, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37035903

RESUMO

A commentary is provided on issues raised in the Special Issue of Hippocampus (2023) on hippocampal system view representations. First, the evidence for hippocampal and parahippocampal spatial view cells in primates including humans shows that the allocentric representations provided by at least some of these cells are very useful for human memory in that where objects and rewards are seen in the world "out there" is a key component of episodic memory and navigation. Spatial view cell representations provide for memory and navigation to be independent of the place where the individual is currently located and of the egocentric coordinates of the viewed location and the facing direction of the individual. Second, memory and navigation in humans are normally related to the visual cues encoded by spatial view cells that define a location "out there" such as a building, hill, and so forth, not to an unmarked place without local cues and identified only by distant environmental/room cues. Third, "mixed" representations, for example of particular combinations of spatial view and place, can arise if the training has been for only some combinations of place and view, for that is what can then be learned by the hippocampus. Fourth, rodents, with their much less good visual acuity (~1 cycle/° in rats, compared with ~60 cycles/° for the human fovea), and rodents' very wide viewing angle for the world (~270°) might be expected, when using the same computational mechanisms as in primates, to use widely spaced environmental cues to define a place where the rodent is located, supported by inputs about place using local olfactory and tactile cues. Fifth, it is shown how view-point dependent allocentric representations could form a view-point independent allocentric representation for memory and navigation. Sixth, concept cells in humans and primates with connectivity to the hippocampus are compared.


Assuntos
Células de Lugar , Navegação Espacial , Humanos , Ratos , Animais , Neurônios , Primatas , Hipocampo , Sinais (Psicologia) , Percepção Espacial
11.
Biol Psychiatry ; 93(9): 790-801, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36788058

RESUMO

BACKGROUND: Considerable uncertainty remains regarding associations of multiple risk factors with Alzheimer's disease (AD). We aimed to systematically screen and validate a wide range of potential risk factors for AD. METHODS: Among 502,493 participants from the UK Biobank, baseline data were extracted for 4171 factors spanning 10 different categories. Phenome-wide association analyses and time-to-event analyses were conducted to identify factors associated with both polygenic risk scores for AD and AD diagnosis at follow-up. We performed two-sample Mendelian randomization analysis to further assess their potential causal relationships with AD and imaging association analysis to discover underlying mechanisms. RESULTS: We identified 39 factors significantly associated with both AD polygenic risk scores and risk of incident AD, where higher levels of education, body size, basal metabolic rate, fat-free mass, computer use, and cognitive functions were associated with a decreased risk of developing AD, and selective food intake and more outdoor exposures were associated with an increased risk of developing AD. The identified factors were also associated with AD-related brain structures, including the hippocampus, entorhinal cortex, and inferior/middle temporal cortex, and 21 of these factors were further supported by Mendelian randomization evidence. CONCLUSIONS: To our knowledge, this is the first study to comprehensively and rigorously assess the effects of wide-ranging risk factors on AD. Strong evidence was found for fat-free body mass, basal metabolic rate, computer use, selective food intake, and outdoor exposures as new risk factors for AD. Integration of genetic, clinical, and neuroimaging information may help prioritize risk factors and prevention targets for AD.


Assuntos
Doença de Alzheimer , Análise da Randomização Mendeliana , Humanos , Estudos Prospectivos , Doença de Alzheimer/genética , Bancos de Espécimes Biológicos , Estudo de Associação Genômica Ampla , Reino Unido/epidemiologia , Polimorfismo de Nucleotídeo Único
12.
Hum Brain Mapp ; 44(6): 2479-2492, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36799566

RESUMO

Some lifestyle factors are related to health and brain function and structure, but the brain systems involved are incompletely understood. A general linear model was used to test the associations of the combined and separate lifestyle risk measures of alcohol use, smoking, diet, amounts of physical activity, leisure activity, and mobile phone use, with brain functional connectivity with the high resolution Human Connectome Project (HCP) atlas in 19,415 participants aged 45-78 from the UK Biobank, with replication with HCP data. Higher combined lifestyle risk scores were associated with lower functional connectivity across the whole brain, but especially of three brain systems. Low physical, and leisure and social, activity were associated with low connectivities of the somatosensory/motor cortical regions and of hippocampal memory-related regions. Low mobile phone use, perhaps indicative of poor social communication channels, was associated with low functional connectivity of brain regions in and related to the superior temporal sulcus that are involved in social behavior and face processing. Smoking was associated with lower functional connectivity of especially frontal regions involved in attention. Lower cortical thickness in some of these regions, and also lower subcortical volume of the hippocampus, amygdala, and globus pallidus, were also associated with the sum of the poor lifestyle scores. This very large scale analysis emphasizes how the lifestyle of humans relates to their brain structure and function, and provides a foundation for understanding the causalities that relate to the differences found here in the brains of different individuals.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Consumo de Bebidas Alcoólicas , Estilo de Vida
13.
J Neurophysiol ; 129(2): 431-444, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598147

RESUMO

To understand the operation of the olfactory system, it is essential to know how information is encoded in the olfactory bulb. We applied Shannon information theoretic methods to address this, with signals from up to 57 glomeruli simultaneously optically imaged from presynaptic inputs in glomeruli in the mouse dorsal (dOB) and lateral (lOB) olfactory bulb, in response to six exemplar pure chemical odors. We discovered that, first, the tuning of these signals from glomeruli to a set of odors is remarkably broad, with a mean sparseness of 0.83 and a mean signal correlation of 0.64. Second, both of these factors contribute to the low information that is available from the responses of even populations of many tens of glomeruli, which was only 1.35 bits across 33 glomeruli on average, compared with the 2.58 bits required to perfectly encode these six odors. Third, although there is considerable interest in the possibility of temporal encoding of stimulus including odor identity, the amount of information in the temporal aspects of the presynaptic glomerular responses was low (mean 0.11 bits) and, importantly, was redundant with respect to the information available from the rates. Fourth, the information from simultaneously recorded glomeruli asymptotes very gradually and nonlinearly, showing that glomeruli do not have independent responses. Fifth, the information from a population became available quite rapidly, within 100 ms of sniff onset, and the peak of the glomerular response was at 200 ms. Sixth, the information from the lOB was not additive with that of the dOB.NEW & NOTEWORTHY We report broad tuning and low odor information available across the lateral and dorsal bulb populations of glomeruli. Even though response latencies can be significantly predictive of stimulus identity, such contained very little information and none that was not redundant with information based on rate coding alone. Last, in line with the emerging notion of the important role of earliest stages of responses ("primacy"), we report a very rapid rise in information after each inhalation.


Assuntos
Odorantes , Bulbo Olfatório , Camundongos , Animais , Bulbo Olfatório/fisiologia , Olfato/fisiologia , Condutos Olfatórios/fisiologia
14.
Commun Biol ; 6(1): 99, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697483

RESUMO

How bilingual brains accomplish the processing of more than one language has been widely investigated by neuroimaging studies. The assimilation-accommodation hypothesis holds that both the same brain neural networks supporting the native language and additional new neural networks are utilized to implement second language processing. However, whether and how this hypothesis applies at the finer-grained levels of both brain anatomical organization and linguistic functions remains unknown. To address this issue, we scanned Chinese-English bilinguals during an implicit reading task involving Chinese words, English words and Chinese pinyin. We observed broad brain cortical regions wherein interdigitated distributed neural populations supported the same cognitive components of different languages. Although spatially separate, regions including the opercular and triangular parts of the inferior frontal gyrus, temporal pole, superior and middle temporal gyrus, precentral gyrus and supplementary motor areas were found to perform the same linguistic functions across languages, indicating regional-level functional assimilation supported by voxel-wise anatomical accommodation. Taken together, the findings not only verify the functional independence of neural representations of different languages, but show co-representation organization of both languages in most language regions, revealing linguistic-feature specific accommodation and assimilation between first and second languages.


Assuntos
Multilinguismo , Humanos , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Idioma , Linguística
15.
Artigo em Inglês | MEDLINE | ID: mdl-36528239

RESUMO

The evidence about the association of smoking with both brain structure and cognitive functions remains inconsistent. Using structural magnetic resonance imaging from the UK Biobank (n = 33,293), we examined the relationships between smoking status, dosage, and abstinence with total and 166 regional brain gray matter volumes (GMV). The relationships between the smoking parameters with cognitive function, and whether this relationship was mediated by brain structure, were then investigated. Smoking was associated with lower total and regional GMV, with the extent depending on the frequency of smoking and on whether smoking had ceased: active regular smokers had the lowest GMV (Cohen's d = -0.362), and former light smokers had a slightly smaller GMV (Cohen's d = -0.060). The smaller GMV in smokers was most evident in the thalamus. Higher lifetime exposure (i.e., pack-years) was associated with lower total GMV (ß = -311.84, p = 8.35 × 10-36). In those who ceased smoking, the duration of abstinence was associated with a larger total GMV (ß = 139.57, p = 2.36 × 10-08). It was further found that reduced cognitive function was associated with smoker parameters and that the associations were partially mediated by brain structure. This is the largest scale investigation we know of smoking and brain structure, and these results are likely to be robust. The findings are of associations between brain structure and smoking, and in the future, it will be important to assess whether brain structure influences smoking status, or whether smoking influences brain structure, or both.


Assuntos
Bancos de Espécimes Biológicos , Encéfalo , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Fumar/epidemiologia , Cognição , Imageamento por Ressonância Magnética/métodos , Reino Unido/epidemiologia
16.
Hum Brain Mapp ; 44(4): 1603-1616, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36515634

RESUMO

The comprehension of spoken language is one of the most essential language functions in humans. However, the neurological underpinnings of auditory comprehension remain under debate. Here we used multi-modal neuroimaging analyses on a group of patients with low-grade gliomas to localize cortical regions and white matter tracts responsible for auditory language comprehension. Region-of-interests and voxel-level whole-brain analyses showed that cortical areas in the posterior temporal lobe are crucial for language comprehension. The fiber integrity assessed with diffusion tensor imaging of the arcuate fasciculus and the inferior longitudinal fasciculus was strongly correlated with both auditory comprehension and the grey matter volume of the inferior temporal and middle temporal gyri. Together, our findings provide direct evidence for an integrated network of auditory comprehension whereby the superior temporal gyrus and sulcus, the posterior parts of the middle and inferior temporal gyri serve as auditory comprehension cortex, and the arcuate fasciculus and the inferior longitudinal fasciculus subserve as crucial structural connectivity. These findings provide critical evidence on the neural underpinnings of language comprehension.


Assuntos
Neoplasias Encefálicas , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Compreensão , Imagem de Tensor de Difusão/métodos , Mapeamento Encefálico/métodos , Vias Neurais/diagnóstico por imagem , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem
17.
Prog Neurobiol ; 220: 102385, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442728

RESUMO

The amygdala and orbitofrontal cortex have been implicated in emotion. To understand these regions better in humans, their effective connectivity with 360 cortical regions was measured in 171 humans from the Human Connectome Project, and complemented with functional connectivity and diffusion tractography. The human amygdala has effective connectivity from few cortical regions compared to the orbitofrontal cortex: primarily from auditory cortex A5 and the related superior temporal gyrus and temporal pole regions; the piriform (olfactory) cortex; the lateral orbitofrontal cortex 47m; somatosensory cortex; the hippocampus, entorhinal cortex, perirhinal cortex, and parahippocampal TF; and from the cholinergic nucleus basalis. The amygdala has effective connectivity to the hippocampus, entorhinal and perirhinal cortex; to the temporal pole; and to the lateral orbitofrontal cortex. The orbitofrontal cortex has effective connectivity from gustatory, olfactory, and temporal visual, auditory and pole cortex, and to the pregenual anterior and posterior cingulate cortex, hippocampal system, and prefrontal cortex, and provides for rewards and punishers to be used in reported emotions, and memory and navigation to goals. Given the paucity of amygdalo-neocortical connectivity in humans, it is proposed that the human amygdala is involved primarily in autonomic and conditioned responses via brainstem connectivity, rather than in reported (declarative) emotion.


Assuntos
Tonsila do Cerebelo , Córtex Pré-Frontal , Humanos , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Emoções/fisiologia , Córtex Entorrinal/fisiologia , Vias Neurais/fisiologia
18.
Cereb Cortex ; 33(10): 6207-6227, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36573464

RESUMO

To understand auditory cortical processing, the effective connectivity between 15 auditory cortical regions and 360 cortical regions was measured in 171 Human Connectome Project participants, and complemented with functional connectivity and diffusion tractography. 1. A hierarchy of auditory cortical processing was identified from Core regions (including A1) to Belt regions LBelt, MBelt, and 52; then to PBelt; and then to HCP A4. 2. A4 has connectivity to anterior temporal lobe TA2, and to HCP A5, which connects to dorsal-bank superior temporal sulcus (STS) regions STGa, STSda, and STSdp. These STS regions also receive visual inputs about moving faces and objects, which are combined with auditory information to help implement multimodal object identification, such as who is speaking, and what is being said. Consistent with this being a "what" ventral auditory stream, these STS regions then have effective connectivity to TPOJ1, STV, PSL, TGv, TGd, and PGi, which are language-related semantic regions connecting to Broca's area, especially BA45. 3. A4 and A5 also have effective connectivity to MT and MST, which connect to superior parietal regions forming a dorsal auditory "where" stream involved in actions in space. Connections of PBelt, A4, and A5 with BA44 may form a language-related dorsal stream.


Assuntos
Córtex Auditivo , Humanos , Córtex Auditivo/diagnóstico por imagem , Lobo Temporal , Lobo Parietal , Semântica , Idioma
19.
Cereb Cortex ; 33(8): 4939-4963, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36227217

RESUMO

Effective connectivity, functional connectivity, and tractography were measured between 57 cortical frontal and somatosensory regions and the 360 cortical regions in the Human Connectome Project (HCP) multimodal parcellation atlas for 171 HCP participants. A ventral somatosensory stream connects from 3b and 3a via 1 and 2 and then via opercular and frontal opercular regions to the insula, which then connects to inferior parietal PF regions. This stream is implicated in "what"-related somatosensory processing of objects and of the body and in combining with visual inputs in PF. A dorsal "action" somatosensory stream connects from 3b and 3a via 1 and 2 to parietal area 5 and then 7. Inferior prefrontal regions have connectivity with the inferior temporal visual cortex and orbitofrontal cortex, are implicated in working memory for "what" processing streams, and provide connectivity to language systems, including 44, 45, 47l, TPOJ1, and superior temporal visual area. The dorsolateral prefrontal cortex regions that include area 46 have connectivity with parietal area 7 and somatosensory inferior parietal regions and are implicated in working memory for actions and planning. The dorsal prefrontal regions, including 8Ad and 8Av, have connectivity with visual regions of the inferior parietal cortex, including PGs and PGi, and are implicated in visual and auditory top-down attention.


Assuntos
Córtex Motor , Humanos , Imageamento por Ressonância Magnética , Córtex Somatossensorial/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Parietal
20.
Cereb Cortex ; 33(7): 3319-3349, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35834308

RESUMO

The effective connectivity between 55 visual cortical regions and 360 cortical regions was measured in 171 HCP participants using the HCP-MMP atlas, and complemented with functional connectivity and diffusion tractography. A Ventrolateral Visual "What" Stream for object and face recognition projects hierarchically to the inferior temporal visual cortex, which projects to the orbitofrontal cortex for reward value and emotion, and to the hippocampal memory system. A Ventromedial Visual "Where" Stream for scene representations connects to the parahippocampal gyrus and hippocampus. An Inferior STS (superior temporal sulcus) cortex Semantic Stream receives from the Ventrolateral Visual Stream, from visual inferior parietal PGi, and from the ventromedial-prefrontal reward system and connects to language systems. A Dorsal Visual Stream connects via V2 and V3A to MT+ Complex regions (including MT and MST), which connect to intraparietal regions (including LIP, VIP and MIP) involved in visual motion and actions in space. It performs coordinate transforms for idiothetic update of Ventromedial Stream scene representations. A Superior STS cortex Semantic Stream receives visual inputs from the Inferior STS Visual Stream, PGi, and STV, and auditory inputs from A5, is activated by face expression, motion and vocalization, and is important in social behaviour, and connects to language systems.


Assuntos
Córtex Visual , Vias Visuais , Humanos , Vias Visuais/diagnóstico por imagem , Lobo Temporal , Hipocampo , Córtex Pré-Frontal , Lobo Parietal , Mapeamento Encefálico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...