Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1139: 212-21, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18991867

RESUMO

The glutamate-glutamine cycle between neurons and glia is tightly related to excitatory glutamatergic and inhibitory GABAergic regulation in brain. The role of this neuron-astrocyte cross-talk on the neurotoxicity induced by amphetamines is not understood. Also, the impact of neurotoxic doses of amphetamines on the balance between glutamatergic and GABAergic circuits is largely unknown. The aim of this work was to assess the acute effect of a neurotoxic regimen of amphetamine (AMPH) on glutamine (GLN, an astrocytic marker) levels and on glutamine/glutamate (an index for glutamate-glutamine cycle) and GABA/glutamate ratios in rat brain. Sprague-Dawley rats were sacrificed 4 and 24 h after a single-dose regimen of AMPH (30 mg/kg, i.p.), and the caudate-putamen (CPu), frontal cortex (FC), and hippocampus (Hp) were dissected for analysis of glutamate (GLU), gamma-aminobutyric acid (GABA), and GLN. The total content of these amino acids was measured using a microbore HPLC electrochemical detector. Although AMPH did not change GLU levels, it increased both GLN content and GLN/GLU ratio (160-469%) at 4 h, but not at 24 h, in all regions after injection. Striatal GABA levels and GABA/GLU ratio were increased (46 and 100%, respectively) at 24 h. In hippocampus the GABA/GLU increase (60%) occurred as early as 4 h after treatment. To the contrary, AMPH exerted no effect in GABA/GLU balance in frontal cortex. These data strongly suggest that this neurotoxic AMPH regimen provoked an early increase in the glutamate-glutamine cycle between neurons and glia. This increase may ultimately lead to an upregulation of the inhibitory system as a compensatory response.


Assuntos
Anfetamina/farmacologia , Encéfalo , Estimulantes do Sistema Nervoso Central/farmacologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Núcleo Caudado/metabolismo , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Masculino , Neurônios/metabolismo , Putamen/metabolismo , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
2.
Ann N Y Acad Sci ; 1139: 222-31, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18991868

RESUMO

The aim of this study was to verify the effect of chronic exercise on the striatal dopamine (DA) outflow induced by low and high single doses of amphetamine (AMPH), and verify the existence of an exercise protective role on neurodegeneration. Adult male Sprague-Dawley rats were randomly separated into six groups: chronic exercise, saline; chronic exercise, 5 mg kg(-1) AMPH; chronic exercise, 30 mg kg(-1) AMPH; without exercise, saline; without exercise, 5 mg kg(-1) AMPH; without exercise, 30 mg kg(-1) AMPH. Chronic exercise consisted of an 8-week running program on a treadmill, with increasing intensity. Animals were anesthetized, placed into a stereotaxic frame and an intracerebral guide cannula implanted into the caudate-putamen. When indicated, microdialysis was performed. Dialysate samples were collected during 30-min intervals for 6 h, before and after the intraperitonial administration of AMPH or saline solution. HPLC with electrochemical detection was used to quantify DA. Chronic exercise did not significantly change the extracellular DA basal values. Regarding the maximal DA levels in the dialysates, in the rats treated with 5 mg kg(-1) AMPH, there was no significant difference between groups with and without chronic exercise; on the contrary, in animals treated with 30 mg kg(-1) AMPH, the DA release was lower in the group with chronic exercise. Moreover, the maintenance of higher levels of DA along time in the training group suggests a diminished reuptake of DA. By using the Fluoro-Jade C staining technique, we did not find neuronal death in any of the groups. In conclusion, these results suggest that chronic exercise leads to a diminished release and reuptake of DA after administration of a high dose of AMPH, whereas neither chronic exercise nor AMPH seems to induce neurodegeneration.


Assuntos
Anfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Degeneração Neural/induzido quimicamente , Condicionamento Físico Animal/fisiologia , Animais , Corpo Estriado/efeitos dos fármacos , Humanos , Masculino , Microdiálise , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...