Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 596(16): 3505-3529, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29797726

RESUMO

KEY POINTS: Essential hypertension is associated with hyperactivity of the sympathetic nervous system and hypoperfusion of the brainstem area controlling arterial pressure. Sympathetic and parasympathetic innervation of vertebrobasilar arteries may regulate blood perfusion to the brainstem. We examined the autonomic innervation of these arteries in pre-hypertensive (PHSH) and hypertensive spontaneously hypertensive (SH) rats relative to age-matched Wistar rats. Our main findings were: (1) an unexpected decrease in noradrenergic sympathetic innervation in PHSH and SH compared to Wistar rats despite elevated sympathetic drive in PHSH rats; (2) a dramatic deficit in cholinergic and peptidergic parasympathetic innervation in PHSH and SH compared to Wistar rats; and (3) denervation of sympathetic fibres did not alter vertebrobasilar artery morphology or arterial pressure. Our results support a compromised vasodilatory capacity in PHSH and SH rats compared to Wistar rats, which may explain their hypoperfused brainstem. ABSTRACT: Neurogenic hypertension may result from brainstem hypoperfusion. We previously found remodelling (decreased lumen, increased wall thickness) in vertebrobasilar arteries of juvenile, pre-hypertensive spontaneously hypertensive (PHSH) and adult spontaneously hypertensive (SH) rats compared to age-matched normotensive rats. We tested the hypothesis that there would be a greater density of sympathetic to parasympathetic innervation of vertebrobasilar arteries in SH versus Wistar rats irrespective of the stage of development and that sympathetic denervation (ablation of the superior cervical ganglia bilaterally) would reverse the remodelling and lower blood pressure. Contrary to our hypothesis, immunohistochemistry revealed a decrease in the innervation density of noradrenergic sympathetic fibres in adult SH rats (P < 0.01) compared to Wistar rats. Unexpectedly, there was a 65% deficit in parasympathetic fibres, as assessed by both vesicular acetylcholine transporter (α-VAChT) and vasoactive intestinal peptide (α-VIP) immunofluorescence (P < 0.002) in PHSH rats compared to age-matched Wistar rats. Although the neural activity of the internal cervical sympathetic branch, which innervates the vertebrobasilar arteries, was higher in PHSH relative to Wistar rats, its denervation had no effect on the vertebrobasilar artery morphology or persistent effect on arterial pressure in SH rats. Our neuroanatomic and functional data do not support a role for sympathetic nerves in remodelling of the vertebrobasilar artery wall in PHSH or SH rats. The remodelling of vertebrobasilar arteries and the elevated activity in the internal cervical sympathetic nerve coupled with their reduced parasympathetic innervation suggests a compromised vasodilatory capacity in PHSH and SH rats that could explain their brainstem hypoperfusion.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Artéria Basilar/inervação , Hipertensão/fisiopatologia , Vasodilatação , Artéria Vertebral/inervação , Animais , Artéria Basilar/metabolismo , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Artéria Vertebral/metabolismo
2.
J Physiol ; 594(22): 6463-6485, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27357059

RESUMO

This review aims to summarise the contemporary evidence for the presence and function of the parasympathetic innervation of the cerebral circulation with emphasis on the vertebral and basilar arteries (the posterior cerebral circulation). We consider whether the parasympathetic innervation of blood vessels could be used as a means to increase cerebral blood flow. This may have clinical implications for pathologies associated with cerebral hypoperfusion such as stroke, dementia and hypertension. Relative to the anterior cerebral circulation little is known of the origins and neurochemical phenotypes of the parasympathetic innervation of the vertebrobasilar arteries. These vessels normally provide blood flow to the brainstem and cerebellum but can, via the Circle of Willis upon stenosis of the internal carotid arteries, supply blood to the anterior cerebral circulation too. We review the multiple types of parasympathetic fibres and their distinct transmitter mechanisms and how these vary with age, disease and species. We highlight the importance of parasympathetic fibres for mediating the vasodilatory response to sympathetic activation. Current trials are investigating the possibility of electrically stimulating the postganglionic parasympathetic ganglia to improve cerebal blood flow to reduce the penumbra following stroke. We conclude that although there are substantial gaps in our understanding of the origins of parasympathetic innervation of the vertebrobasilar arteries, activation of this system under some conditions might bring therapeutic benefits.


Assuntos
Artérias Cerebrais/fisiologia , Circulação Cerebrovascular/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Animais , Artéria Carótida Interna/fisiologia , Humanos , Vasodilatação/fisiologia
3.
J Neurosci ; 36(18): 4930-9, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27147648

RESUMO

UNLABELLED: Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specifically. Selective stimulation of glutamatergic neurons during the online maintenance of information enhanced associative recognition memory in normal animals. This cognitive enhancing effect was replicated by local infusions of the AMPAkine CX516, but not CX546, which differ in their effects on EPSPs. This suggests that enhancing the amplitude, but not the duration, of excitatory synaptic currents improves memory performance. Increasing glutamate release through infusions of the mGluR7 presynaptic receptor antagonist MMPIP had no effect on performance. SIGNIFICANCE STATEMENT: These results provide new mechanistic information that could guide the targeting of future cognitive enhancers. Our work suggests that improved associative-recognition memory can be achieved by enhancing endogenous glutamatergic neuronal activity selectively using an optogenetic approach. We build on these observations to recapitulate this effect using drug treatments that enhance the amplitude of EPSPs; however, drugs that alter the duration of the EPSP or increase glutamate release lack efficacy. This suggests that both neural and temporal specificity are needed to achieve cognitive enhancement.


Assuntos
Glutamatos/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Optogenética , Córtex Pré-Frontal/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Dioxóis/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Memória de Curto Prazo/fisiologia , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-fos/fisiologia , Desempenho Psicomotor/fisiologia , Piridonas/farmacologia , Ratos , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/fisiologia
4.
J Neurosci ; 27(9): 2212-23, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17329418

RESUMO

We investigated the role of kainate receptors in the generation of theta oscillations using (S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxythiophene-3-yl-methyl)pyrimidine-2,4-dione (UBP304), a novel, potent and highly selective antagonist of GLU(K5)-containing kainate receptors. EEG and single-unit recordings were made from the dorsal hippocampus of awake, freely moving rats trained to forage for food. Bilateral intracerebroventricular injections of UBP304 (2.0 microl, two times; 2.08 mM) caused a clear (approximately 25%) reduction in theta frequency that was dissociable from behavioral effects of the drug. The locations of firing fields of principal cells in the hippocampal formation were generally preserved, but both field firing rates and the precision of field organization decreased. UBP304 lowered the frequency of the theta modulation of hippocampal interneuron discharge, accurately matching the reduced frequency of the theta field oscillation. UBP308 [(R)-1-(2-amino-2-carboxyethyl)-3-(2-carboxythiophene-3-yl-methyl)pyrimidine-2,4-dione], the inactive enantiomer of UBP304, caused none of these effects. Our results suggest that GLU(K5) receptors have an important role in modulating theta activity. In addition, the effects on cellular responses provide both insight into the mechanisms of theta pacing, and useful information for models of temporal coding.


Assuntos
Hipocampo/fisiologia , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de Ácido Caínico/fisiologia , Ritmo Teta , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Técnicas In Vitro , Masculino , Ratos , Ratos Long-Evans , Ratos Wistar , Ritmo Teta/efeitos dos fármacos , Uracila/análogos & derivados , Uracila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...