Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 10: 982, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737031

RESUMO

This study aims at investigating genomic diversity of several turkey populations using Copy Number Variants (CNVs). A total of 115 individuals from six Italian breeds (Colle Euganei, Bronzato Comune Italiano, Parma e Piacenza, Brianzolo, Nero d'Italia, and Ermellinato di Rovigo), seven Narragansett, 38 commercial hybrids, and 30 Mexican turkeys, were genotyped with the Affymetrix 600K single nucleotide polymorphism (SNP) turkey array. The CNV calling was performed with the Hidden Markov Model of PennCNV software and with the Copy Number Analysis Module of SVS 8.4 by Golden Helix®. CNV were summarized into CNV regions (CNVRs) at population level using BEDTools. Variability among populations has been addressed by hierarchical clustering (pvclust R package) and by principal component analysis (PCA). A total of 2,987 CNVs were identified covering 4.65% of the autosomes of the Turkey_5.0/melGal5 assembly. The CNVRs identified in at least two individuals were 362-189 gains, 116 losses, and 57 complexes. Among these regions the 51% contain annotated genes. This study is the first CNV mapping of turkey population using 600K chip. CNVs clustered the individuals according to population and their geographical origin. CNVs are known to be indicators also of adaptation, as some researches in different species are suggesting.

2.
Animals (Basel) ; 9(9)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480266

RESUMO

Bovine tuberculosis (bTB) is a disease of cattle that represents a risk to public health and causes severe economic losses to the livestock industry. Recently, genetic studies, like genome-wide association studies (GWAS) have greatly improved the investigation of complex diseases identifying thousands of disease-associated genomic variants. Here, we present evidence of genetic variants associated with resistance to TB in Mexican dairy cattle using a case-control approach with a selective DNA pooling experimental design. A total of 154 QTLRs (quantitative trait loci regions) at 10% PFP (proportion of false positives), 42 at 5% PFP and 5 at 1% PFP have been identified, which harbored 172 annotated genes. On BTA13, five new QTLRs were identified in the MACROD2 and KIF16B genes, supporting their involvement in resistance to bTB. Six QTLRs harbor seven annotated genes that have been previously reported as involved in immune response against Mycobacterium spp: BTA (Bos taurus autosome) 1 (CD80), BTA3 (CTSS), BTA 3 (FCGR1A), BTA 23 (HFE), BTA 25 (IL21R), and BTA 29 (ANO9 and SIGIRR). We identified novel QTLRs harboring genes involved in Mycobacterium spp. immune response. This is a first screening for resistance to TB infection on Mexican dairy cattle based on a dense SNP (Single Nucleotide Polymorphism) chip.

3.
Genet Sel Evol ; 44: 28, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22937985

RESUMO

BACKGROUND: It is commonly assumed that prediction of genome-wide breeding values in genomic selection is achieved by capitalizing on linkage disequilibrium between markers and QTL but also on genetic relationships. Here, we investigated the reliability of predicting genome-wide breeding values based on population-wide linkage disequilibrium information, based on identity-by-descent relationships within the known pedigree, and to what extent linkage disequilibrium information improves predictions based on identity-by-descent genomic relationship information. METHODS: The study was performed on milk, fat, and protein yield, using genotype data on 35 706 SNP and deregressed proofs of 1086 Italian Brown Swiss bulls. Genome-wide breeding values were predicted using a genomic identity-by-state relationship matrix and a genomic identity-by-descent relationship matrix (averaged over all marker loci). The identity-by-descent matrix was calculated by linkage analysis using one to five generations of pedigree data. RESULTS: We showed that genome-wide breeding values prediction based only on identity-by-descent genomic relationships within the known pedigree was as or more reliable than that based on identity-by-state, which implicitly also accounts for genomic relationships that occurred before the known pedigree. Furthermore, combining the two matrices did not improve the prediction compared to using identity-by-descent alone. Including different numbers of generations in the pedigree showed that most of the information in genome-wide breeding values prediction comes from animals with known common ancestors less than four generations back in the pedigree. CONCLUSIONS: Our results show that, in pedigreed breeding populations, the accuracy of genome-wide breeding values obtained by identity-by-descent relationships was not improved by identity-by-state information. Although, in principle, genomic selection based on identity-by-state does not require pedigree data, it does use the available pedigree structure. Our findings may explain why the prediction equations derived for one breed may not predict accurate genome-wide breeding values when applied to other breeds, since family structures differ among breeds.


Assuntos
Genoma/genética , Linhagem , Seleção Genética , Animais , Bovinos/genética , Desequilíbrio de Ligação , Masculino , Modelos Genéticos , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único , População/genética , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...