Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 32(4): 33, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33751248

RESUMO

Phytocystatins are endogenous cysteine-protease inhibitors present in plants. They are involved in initial germination rates and in plant defense mechanisms against phytopathogens. Recently, a new phytocystatin derived from sweet orange, CsinCPI-2, has been shown to inhibit the enzymatic activity of human cathepsins, presenting anti-inflammatory potential and pro-osteogenic effect in human dental pulp cells. The osteogenic potential of the CsinCPI-2 protein represents a new insight into plants cysteine proteases inhibitors and this effect needs to be better addressed. The aim of this study was to investigate the performance of pre-osteoblasts in response to CsinCPI-2, mainly focusing on cell adhesion, proliferation and differentiation mechanisms. Together our data show that in the first hours of treatment, protein in CsinCPI-2 promotes an increase in the expression of adhesion markers, which decrease after 24 h, leading to the activation of Kinase-dependent cyclines (CDKs) modulating the transition from G1 to S phases cell cycle. In addition, we saw that the increase in ERK may be associated with activation of the differentiation profile, also observed with an increase in the B-Catenin pathway and an increase in the expression of Runx2 in the group that received the treatment with CsinCPI-2.


Assuntos
Cistatinas/química , Osteoblastos/citologia , beta Catenina/metabolismo , Células 3T3 , Animais , Anti-Inflamatórios/química , Adesão Celular , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Citrus sinensis , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Citoesqueleto/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteogênese , Compostos Fitoquímicos , Cicatrização
2.
Braz Oral Res ; 34: e080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32696910

RESUMO

The aims of the present study were to compare conventional radiography, radiographs digitized with a scanner or photographic camera, and digital radiography, used to evaluate the radiopacity of endodontic materials, and to compare the accuracy of linear and quadratic models used to convert radiopacity values to equivalent millimeters of aluminum (mm Al). Specimens of AH Plus, Endofill, Biodentine and BioMTA materials (n = 8) were radiographed next to an aluminum step-wedge using radiographic films and digital radiography systems (FONA CMOS sensor, Kodak CMOS sensor and photosensitive phosphor plate-PSP). Conventional radiographs were digitized using a scanner or photographic digital camera. Digital images of all the radiographic systems were evaluated using dedicated software. Optical density units (ODU) of the specimens and the aluminum step-wedge were evaluated by a photo-densitometer (PTDM), used in conventional radiographs. The radiopacity in equivalent mm Al of the materials was determined by linear and quadratic models, and the coefficients of determination (R2) values were calculated for each model. Radiopacity of the materials ranged from -9% to 25% for digital systems and digitized radiographs, compared to the PTDM (p < 0.05). The R2 values of the quadratic model were higher than those of the linear model. In conclusion, the FONA CMOS sensor showed the lowest radiopacity variability of the methodologies used, compared with the PTDM, except for the BioMTA group (higher than PTDM). The quadratic model showed higher R2 values than the linear model, thus indicating better accuracy and possible adoption to evaluate the radiopacity of endodontic materials.


Assuntos
Alumínio , Teste de Materiais , Radiografia Dentária Digital , Filme para Raios X
3.
Braz. oral res. (Online) ; 34: e080, 2020. tab, graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1132682

RESUMO

Abstract The aims of the present study were to compare conventional radiography, radiographs digitized with a scanner or photographic camera, and digital radiography, used to evaluate the radiopacity of endodontic materials, and to compare the accuracy of linear and quadratic models used to convert radiopacity values to equivalent millimeters of aluminum (mm Al). Specimens of AH Plus, Endofill, Biodentine and BioMTA materials (n = 8) were radiographed next to an aluminum step-wedge using radiographic films and digital radiography systems (FONA CMOS sensor, Kodak CMOS sensor and photosensitive phosphor plate-PSP). Conventional radiographs were digitized using a scanner or photographic digital camera. Digital images of all the radiographic systems were evaluated using dedicated software. Optical density units (ODU) of the specimens and the aluminum step-wedge were evaluated by a photo-densitometer (PTDM), used in conventional radiographs. The radiopacity in equivalent mm Al of the materials was determined by linear and quadratic models, and the coefficients of determination (R2) values were calculated for each model. Radiopacity of the materials ranged from -9% to 25% for digital systems and digitized radiographs, compared to the PTDM (p < 0.05). The R2 values of the quadratic model were higher than those of the linear model. In conclusion, the FONA CMOS sensor showed the lowest radiopacity variability of the methodologies used, compared with the PTDM, except for the BioMTA group (higher than PTDM). The quadratic model showed higher R2 values than the linear model, thus indicating better accuracy and possible adoption to evaluate the radiopacity of endodontic materials.


Assuntos
Alumínio , Filme para Raios X , Teste de Materiais , Radiografia Dentária Digital
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA