Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3877, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747659

RESUMO

Deep learning methods for digital pathology analysis are an effective way to address multiple clinical questions, from diagnosis to prediction of treatment outcomes. These methods have also been used to predict gene mutations from pathology images, but no comprehensive evaluation of their potential for extracting molecular features from histology slides has yet been performed. We show that HE2RNA, a model based on the integration of multiple data modes, can be trained to systematically predict RNA-Seq profiles from whole-slide images alone, without expert annotation. Through its interpretable design, HE2RNA provides virtual spatialization of gene expression, as validated by CD3- and CD20-staining on an independent dataset. The transcriptomic representation learned by HE2RNA can also be transferred on other datasets, even of small size, to increase prediction performance for specific molecular phenotypes. We illustrate the use of this approach in clinical diagnosis purposes such as the identification of tumors with microsatellite instability.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/genética , RNA-Seq/métodos , Algoritmos , Perfilação da Expressão Gênica/métodos , Humanos , Instabilidade de Microssatélites , Modelos Genéticos , Neoplasias/diagnóstico , Neoplasias/metabolismo
2.
J Neurophysiol ; 123(5): 1583-1599, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32049596

RESUMO

Nervous system maturation occurs on multiple levels-synaptic, circuit, and network-at divergent timescales. For example, many synaptic properties mature gradually, whereas emergent network dynamics can change abruptly. Here we combine experimental and theoretical approaches to investigate a sudden transition in spontaneous and sensory evoked thalamocortical activity necessary for the development of vision. Inspired by in vivo measurements of timescales and amplitudes of synaptic currents, we extend the Wilson and Cowan model to take into account the relative onset timing and amplitudes of inhibitory and excitatory neural population responses. We study this system as these parameters are varied within amplitudes and timescales consistent with developmental observations to identify the bifurcations of the dynamics that might explain the network behaviors in vivo. Our findings indicate that the inhibitory timing is a critical determinant of thalamocortical activity maturation; a gradual decay of the ratio of inhibitory to excitatory onset time drives the system through a bifurcation that leads to a sudden switch of the network spontaneous activity from high-amplitude oscillations to a nonoscillatory active state. This switch also drives a change from a threshold bursting to linear response to transient stimuli, also consistent with in vivo observation. Thus we show that inhibitory timing is likely critical to the development of network dynamics and may underlie rapid changes in activity without similarly rapid changes in the underlying synaptic and cellular parameters.NEW & NOTEWORTHY Relying on a generalization of the Wilson-Cowan model, which allows a solid analytic foundation for the understanding of the link between maturation of inhibition and network dynamics, we propose a potential explanation for the role of developing excitatory/inhibitory synaptic delays in mediating a sudden switch in thalamocortical visual activity preceding vision onset.


Assuntos
Córtex Cerebral/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Modelos Teóricos , Rede Nervosa/fisiologia , Tálamo/fisiologia , Animais , Córtex Cerebral/crescimento & desenvolvimento , Humanos , Rede Nervosa/crescimento & desenvolvimento , Tálamo/crescimento & desenvolvimento
3.
Sci Rep ; 9(1): 10351, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316157

RESUMO

Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers.


Assuntos
Doença de Crohn/genética , Aprendizado Profundo , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Alelos , Área Sob a Curva , Árvores de Decisões , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Mutação INDEL , Modelos Logísticos , Masculino , Modelos Genéticos , Redes Neurais de Computação , Dinâmica não Linear , Polimorfismo de Nucleotídeo Único , Curva ROC
4.
Neural Comput ; 31(4): 653-680, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30764741

RESUMO

Accurate population models are needed to build very large-scale neural models, but their derivation is difficult for realistic networks of neurons, in particular when nonlinear properties are involved, such as conductance-based interactions and spike-frequency adaptation. Here, we consider such models based on networks of adaptive exponential integrate-and-fire excitatory and inhibitory neurons. Using a master equation formalism, we derive a mean-field model of such networks and compare it to the full network dynamics. The mean-field model is capable of correctly predicting the average spontaneous activity levels in asynchronous irregular regimes similar to in vivo activity. It also captures the transient temporal response of the network to complex external inputs. Finally, the mean-field model is also able to quantitatively describe regimes where high- and low-activity states alternate (up-down state dynamics), leading to slow oscillations. We conclude that such mean-field models are biologically realistic in the sense that they can capture both spontaneous and evoked activity, and they naturally appear as candidates to build very large-scale models involving multiple brain areas.


Assuntos
Potenciais de Ação , Adaptação Fisiológica , Modelos Neurológicos , Neurônios/fisiologia , Animais , Simulação por Computador , Inibição Neural/fisiologia , Periodicidade
5.
Phys Rev E ; 100(6-1): 062413, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31962518

RESUMO

More interest has been shown in recent years to large-scale spiking simulations of cerebral neuronal networks, coming both from the presence of high-performance computers and increasing details in experimental observations. In this context it is important to understand how population dynamics are generated by the designed parameters of the networks, which is the question addressed by mean-field theories. Despite analytic solutions for the mean-field dynamics already being proposed for current-based neurons (CUBA), a complete analytic description has not been achieved yet for more realistic neural properties, such as conductance-based (COBA) network of adaptive exponential neurons (AdEx). Here, we propose a principled approach to map a COBA on a CUBA. Such an approach provides a state-dependent approximation capable of reliably predicting the firing-rate properties of an AdEx neuron with noninstantaneous COBA integration. We also applied our theory to population dynamics, predicting the dynamical properties of the network in very different regimes, such as asynchronous irregular and synchronous irregular (slow oscillations). This result shows that a state-dependent approximation can be successfully introduced to take into account the subtle effects of COBA integration and to deal with a theory capable of correctly predicting the activity in regimes of alternating states like slow oscillations.


Assuntos
Modelos Neurológicos , Neurônios/citologia , Rede Nervosa/citologia
6.
Neural Comput ; 29(4): 897-936, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28181875

RESUMO

Emotional disorders and psychological flourishing are the result of complex interactions between positive and negative affects that depend on external events and the subject's internal representations. Based on psychological data, we mathematically model the dynamical balance between positive and negative affects as a function of the response to external positive and negative events. This modeling allows the investigation of the relative impact of two leading forms of therapy on affect balance. The model uses a delay differential equation to analytically study the bifurcation diagram of the system. We compare the results of the model to psychological data on a single, recurrently depressed patient who was administered the two types of therapies considered (coping focused versus affect focused). The model leads to the prediction that stabilization at a normal state may rely on evaluating one's emotional state through a historical ongoing emotional state rather than in a narrow present window. The simple mathematical model proposed here offers a theoretical framework for investigating the temporal process of change and parameters of resilience to relapse.

7.
Neuroimage ; 128: 63-73, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26707892

RESUMO

In the early visual cortex, information is processed within functional maps whose layouts are thought to underlie visual perception. However, the precise organization of these functional maps as well as their interrelationships remain unsettled. Here, we show that spatial frequency representation in cat early visual cortex exhibits singularities around which the map organizes like an electric dipole potential. These singularities are precisely co-located with singularities of the orientation map: the pinwheel centers. To show this, we used high resolution intrinsic optical imaging in cat areas 17 and 18. First, we show that a majority of pinwheel centers exhibit in their neighborhood both semi-global maximum and minimum in the spatial frequency map (i.e. extreme values of the spatial frequency in a hypercolumn). This contradicts pioneering studies suggesting that pinwheel centers are placed at the locus of a single spatial frequency extremum. Based on an analogy with electromagnetism, we proposed a mathematical model for a dipolar structure, accurately fitting optical imaging data. We conclude that a majority of orientation pinwheel centers form spatial frequency dipoles in cat early visual cortex. Given the functional specificities of neurons at singularities in the visual cortex, it is argued that the dipolar organization of spatial frequency around pinwheel centers could be fundamental for visual processing.


Assuntos
Córtex Visual/fisiologia , Animais , Mapeamento Encefálico/métodos , Gatos , Processamento de Imagem Assistida por Computador , Imagem Óptica , Estimulação Luminosa , Córtex Visual/anatomia & histologia
8.
PLoS Comput Biol ; 11(11): e1004623, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26587664

RESUMO

The layout of sensory brain areas is thought to subtend perception. The principles shaping these architectures and their role in information processing are still poorly understood. We investigate mathematically and computationally the representation of orientation and spatial frequency in cat primary visual cortex. We prove that two natural principles, local exhaustivity and parsimony of representation, would constrain the orientation and spatial frequency maps to display a very specific pinwheel-dipole singularity. This is particularly interesting since recent experimental evidences show a dipolar structures of the spatial frequency map co-localized with pinwheels in cat. These structures have important properties on information processing capabilities. In particular, we show using a computational model of visual information processing that this architecture allows a trade-off in the local detection of orientation and spatial frequency, but this property occurs for spatial frequency selectivity sharper than reported in the literature. We validated this sharpening on high-resolution optical imaging experimental data. These results shed new light on the principles at play in the emergence of functional architecture of cortical maps, as well as their potential role in processing information.


Assuntos
Neocórtex/fisiologia , Estimulação Luminosa , Córtex Visual/fisiologia , Algoritmos , Animais , Gatos , Biologia Computacional , Imagem Óptica , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...