Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cells ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474372

RESUMO

Overexpression of the Runt-related transcription factor 2 (RUNX2) has been reported in several cancer types, and the C-X-C motif chemokine receptor 4 (CXCR4) has an important role in tumour progression. However, the interplay between CXCR4 and RUNX2 in melanoma cells remains poorly understood. In the present study, we used melanoma cells and a RUNX2 knockout (RUNX2-KO) in vitro model to assess the influence of RUNX2 on CXCR4 protein levels along with its effects on markers associated with cell invasion and autophagy. Osteotropism was assessed using a 3D microfluidic model. Moreover, we assessed the impact of CXCR4 on the cellular levels of key cellular signalling proteins involved in autophagy. We observed that melanoma cells express both RUNX2 and CXCR4. Restored RUNX2 expression in RUNX2 KO cells increased the expression levels of CXCR4 and proteins associated with the metastatic process. The protein markers of autophagy LC3 and beclin were upregulated in response to increased CXCR4 levels. The CXCR4 inhibitor WZ811 reduced osteotropism and activated the mTOR and p70-S6 cell signalling proteins. Our data indicate that the RUNX2 transcription factor promotes the expression of the CXCR4 chemokine receptor on melanoma cells, which in turn promotes autophagy, cell invasiveness, and osteotropism, through the inhibition of the mTOR signalling pathway. Our data suggest that RUNX2 promotes melanoma progression by upregulating CXCR4, and we identify the latter as a key player in melanoma-related osteotropism.


Assuntos
Melanoma , Humanos , Melanoma/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Receptores CXCR4
2.
Acta Physiol (Oxf) ; 240(4): e14118, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385696

RESUMO

AIM: Force expression is characterized by an interplay of biological and molecular determinants that are expected to differentiate males and females in terms of maximal performance. These include muscle characteristics (muscle size, fiber type, contractility), neuromuscular regulation (central and peripheral factors of force expression), and individual genetic factors (miRNAs and gene/protein expression). This research aims to comprehensively assess these physiological variables and their role as determinants of maximal force difference between sexes. METHODS: Experimental evaluations include neuromuscular components of isometric contraction, intrinsic muscle characteristics (proteins and fiber type), and some biomarkers associated with muscle function (circulating miRNAs and gut microbiome) in 12 young and healthy males and 12 females. RESULTS: Male strength superiority appears to stem primarily from muscle size while muscle fiber-type distribution plays a crucial role in contractile properties. Moderate-to-strong pooled correlations between these muscle parameters were established with specific circulating miRNAs, as well as muscle and plasma proteins. CONCLUSION: Muscle size is crucial in explaining the differences in maximal voluntary isometric force generation between males and females with similar fiber type distribution. Potential physiological mechanisms are seen from associations between maximal force, skeletal muscle contractile properties, and biological markers.


Assuntos
MicroRNAs , Caracteres Sexuais , Masculino , Humanos , Feminino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas , Contração Isométrica/fisiologia , Eletromiografia
3.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256087

RESUMO

Organoids are self-organized, three-dimensional structures derived from stem cells that can mimic the structure and physiology of human organs. Patient-specific induced pluripotent stem cells (iPSCs) and 3D organoid model systems allow cells to be analyzed in a controlled environment to simulate the characteristics of a given disease by modeling the underlying pathophysiology. The recent development of 3D cell models has offered the scientific community an exceptionally valuable tool in the study of rare diseases, overcoming the limited availability of biological samples and the limitations of animal models. This review provides an overview of iPSC models and genetic engineering techniques used to develop organoids. In particular, some of the models applied to the study of rare neuronal, muscular and skeletal diseases are described. Furthermore, the limitations and potential of developing new therapeutic approaches are discussed.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Raras , Animais , Humanos , Organoides , Engenharia Genética , Músculos
4.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685971

RESUMO

The finding of molecules associated with aging is important for the prevention of chronic degenerative diseases and for longevity strategies. MicroRNAs (miRNAs) are post-transcriptional regulators involved in many biological processes and miR-146b-5p has been shown to be involved in different degenerative diseases. However, miR-146b-5p modulation has not been evaluated in mesenchymal stem cells (MSCs) commitment or during aging. Therefore, the modulation of miR-146b-5p in the commitment and differentiation of mesenchymal cells as well as during maturation and aging in zebrafish model were analyzed. In addition, circulating miR-146b-5p was evaluated in human subjects at different age ranges. Thus, the role of physical activity in the modulation of miR-146b-5p was also investigated. To achieve these aims, RT (real-time)-PCR, Western blot, cell transfections, and three-dimensional (3D) culture techniques were applied. Our findings show that miR-146b-5p expression drives MSCs to adipogenic differentiation and increases during zebrafish maturation and aging. In addition, miR-146b-5p expression is higher in females compared to males and it is associated with the aging in humans. Interestingly, we also observed that the physical activity of walking downregulates circulating miR-146b-5p levels in human females and increases the number of chondroprogenitors. In conclusion, miR-146b-5p can be considered an age-related marker and can represent a useful marker for identifying strategies, such as physical activity, aimed at counteracting the degenerative processes of aging.


Assuntos
MicroRNAs , Peixe-Zebra , Animais , Feminino , Humanos , Masculino , Envelhecimento/genética , Exercício Físico , Longevidade , MicroRNAs/genética , Peixe-Zebra/genética
5.
Cells ; 12(16)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37626898

RESUMO

Bone-muscle crosstalk is enabled thanks to the integration of different molecular signals, and it is essential for maintaining the homeostasis of skeletal and muscle tissue. Both the skeletal system and the muscular system perform endocrine activity by producing osteokines and myokines, respectively. These cytokines play a pivotal role in facilitating bone-muscle crosstalk. Moreover, recent studies have highlighted the role of non-coding RNAs in promoting crosstalk between bone and muscle in physiological or pathological conditions. Therefore, positive stimuli or pathologies that target one of the two systems can affect the other system as well, emphasizing the reciprocal influence of bone and muscle. Lifestyle and in particular physical activity influence both the bone and the muscular apparatus by acting on the single system but also by enhancing its crosstalk. Several studies have in fact demonstrated the modulation of circulating molecular factors during physical activity. These molecules are often produced by bone or muscle and are capable of activating signaling pathways involved in bone-muscle crosstalk but also of modulating the response of other cell types. Therefore, in this review we will discuss the effects of physical activity on bone and muscle cells, with particular reference to the biomolecular mechanisms that regulate their cellular interactions.


Assuntos
Sistema Musculoesquelético , Músculos , Fenômenos Fisiológicos Celulares , Células Musculares , Exercício Físico
6.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499177

RESUMO

HIV-1 infection in the absence of treatment results in progression toward AIDS. Host genetic factors play a role in HIV-1 pathogenesis, but complete knowledge is not yet available. Since less-expressed HLA-C variants are associated with poor HIV-1 control and unstable HLA-C variants are associated with higher HIV-1 infectivity, we investigated whether there was a correlation between the different stages of HIV-1 progression and the presence of specific HLA-C allotypes. HLA-C genotyping was performed using allele-specific PCR by analyzing a treatment-naïve cohort of 96 HIV-1-infected patients from multicentric cohorts in the USA, Canada, and Brazil. HIV-1-positive subjects were classified according to their different disease progression status as progressors (Ps, n = 48), long-term non-progressors (LTNPs, n = 37), and elite controllers (ECs, n = 11). HLA-C variants were classified as stable or unstable according to their binding stability to ß2-microglobulin/peptide complex. Our results showed a significant correlation between rapid progression to AIDS and the presence of two or one unstable HLA-C variants (p-value: 0.0078, p-value: 0.0143, respectively). These findings strongly suggest a link between unstable HLA-C variants both at genotype and at allele levels and rapid progression to AIDS. This work provides further insights into the impact of host genetic factors on AIDS progression.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Antígenos HLA-C/genética , Síndrome da Imunodeficiência Adquirida/epidemiologia , Síndrome da Imunodeficiência Adquirida/genética , Progressão da Doença , Infecções por HIV/epidemiologia , Infecções por HIV/genética
7.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499709

RESUMO

Tau microtubule-associated proteins, encoded by the MAPT gene, are mainly expressed in neurons participating in axonal transport and synaptic plasticity. Six major isoforms differentially expressed during cell development and differentiation are translated by alternative splicing of MAPT transcripts. Alterations in the expression of human Tau isoforms and their aggregation have been linked to several neurodegenerative diseases called tauopathies, including Alzheimer's disease, progressive supranuclear palsy, Pick's disease, and frontotemporal dementia with parkinsonism linked to chromosome 17. Great efforts have been dedicated in recent years to shed light on the complex regulatory mechanism of Tau splicing, with a perspective to developing new RNA-based therapies. This review summarizes the most recent contributions to the knowledge of Tau isoform expression and experimental models, highlighting the role of cis-elements and ribonucleoproteins that regulate the alternative splicing of Tau exons.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Tauopatias , Humanos , Processamento Alternativo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Demência Frontotemporal/genética
8.
Curr Issues Mol Biol ; 44(10): 4790-4802, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36286041

RESUMO

Polymorphisms in the ribonuclease L (RNASEL) coding gene and hsa-miR-146a-5p (miR-146a) have been associated with melanoma in a sex-specific manner. We hypothesized that RNASEL and miR-146a expression could be influenced by sex hormones playing a role in the female advantages observed in melanoma incidence and survival. Thus, we explored the effects of testosterone and 17ß-estradiol on RNASEL and miR-146a expression in LM-20 and A375 melanoma cell lines. Direct targeting of miR-146a to the 3' untranslated region (3'UTR) of RNASEL was examined using a luciferase reporter system. Our results indicate that RNASEL is a direct target of miR-146a in both melanoma cell lines. Trough qPCR and western blot analyses, we explored the effect of miR-146a mimic transfection in the presence of each hormone either on RNASEL mRNA level or on protein expression of RNase-L, the enzyme codified by RNASEL gene. In the presence of testosterone or 17ß-estradiol, miR-146a overexpression did not influence RNASEL transcript level in LM-20 cell line, but it slightly induced RNASEL mRNA level in A375 cells. Remarkably, miR-146a overexpression was able to repress the protein level of RNase-L in both LM-20 and A375 cells in the presence of each hormone, as well as to elicit high expression levels of the activated form of the extracellular signal-regulated kinases (ERK)1/2, hence confirming the pro-tumorigenic role of miR-146a overexpression in melanoma. Thereafter, we assessed if the administration of each hormone could affect the endogenous expression of RNASEL and miR-146a genes in LM-20 and A375 cell lines. Testosterone exerted no significant effect on RNASEL gene expression in both cell lines, while 17ß-estradiol enhanced RNASEL transcript level at least in LM-20 melanoma cells. Conversely, miR-146a transcript augmented only in the presence of testosterone in either melanoma cell line. Importantly, each hormone acted quite the opposite regarding the RNase-L protein expression, i.e., testosterone significantly decreased RNase-L expression, whereas 17ß-estradiol increased it. Overall, the data show that, in melanoma cells treated with 17ß-estradiol, RNase-L expression increased likely by transcriptional induction of its gene. Testosterone, instead, decreased RNase-L expression in melanoma cell lines with a post-transcriptional mechanism in which miR-146a could play a role. In conclusion, the pro-tumor activity of androgen hormone in melanoma cells could be exacerbated by both miR-146a increase and RNase-L downregulation. These events may contribute to the worse outcome in male melanoma patients.

9.
J Transl Med ; 20(1): 397, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-36058924

RESUMO

BACKGROUND: NorthCape4000 (NC4000) is the most participated ultra-endurance cycling race. Eight healthy male Caucasian amateur cyclists were evaluated: (a) before starting the preparation period; (b) in the week preceding NC4000 (after the training period); (c) after NC4000 race, with the aim to identify the effects of ultra-cycling on body composition, aerobic capacity and biochemical parameters as well as on the differentiation of progenitor cells. METHODS: Bioelectrical impedance analysis (BIA) and dual energy x-ray absorptiometry (DEXA) assessed body composition; cardiopulmonary exercise test (CPET) evaluated aerobic capacity. Differentiation of circulating progenitor cells was evaluated by analyzing the modulation in the expression of relevant transcription factors. In addition, in vitro experiments were performed to investigate the effects of sera of NC4000 participants on adipogenesis and myogenesis. The effects of NC4000 sera on Sestrins and Sirtuin modulation and the promotion of brown adipogenesis in progenitor cells was investigated as well. Two-tailed Student's paired-test was used to perform statistical analyses. RESULTS: We observed fat mass decrease after training as well as after NC4000 performance; we also recorded that vitamin D and lipid profiles were affected by ultra-cycling. In addition, our findings demonstrated that post-NC4000 participant's pooled sera exerted a positive effect in stimulating myogenesis and in inducing brown adipogenesis in progenitor cells. CONCLUSIONS: The training program and Ultra-cycling lead to beneficial effects on body composition and biochemical lipid parameters, as well as changes in differentiation of progenitor cells, with significant increases in brown adipogenesis and in MYOD levels.


Assuntos
Composição Corporal , Lipídeos , Absorciometria de Fóton , Impedância Elétrica , Humanos , Masculino
10.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886938

RESUMO

Despite human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 being retroviruses closely related at a genomic level, HTLV-2 differs from HTLV-1 in terms of pathogenicity in both single infection and coinfection contexts. Moreover, the HTLV-2 association with clinical outcomes is still debated and several mechanisms underlying HTLV-2 infection remain unexplored as well. Cellular miRNAs are key factors in the post-transcriptional regulation of gene expression and they are known to be potential targets for several pathogens to control the host microenvironment and, in particular, escape immune responses. Here, we identified a HTLV-2-related signature of eight miRNAs (miR-125a-3p, miR-381-3p, miR-502-5p, miR-708-5p, miR-548d-5p, miR-548c-5p, miR-1-3p, and miR-511-5p) in both HTLV-2 infected PBMC and BJABGu cell lines. Altered miRNA expression patterns were correlated with the impairment of Th cell differentiation and signaling pathways driven by cytokines and transcriptional factors such as the Runt-related transcription factor (RUNX) family members. Specifically, we demonstrated that the RUNX2 protein was significantly more expressed in the presence of Tax-2 compared with Tax-1 in an in vitro cell model. To the best of our knowledge, these data represent the first contribution to elucidating the HTLV-2 mediated alteration of host cell miRNA profiles that may impact on HTLV-2 replication and persistent infection.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , MicroRNAs , Linhagem Celular , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Vírus Linfotrópico T Tipo 2 Humano/genética , Vírus Linfotrópico T Tipo 2 Humano/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo
11.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360767

RESUMO

Since the discovery of the human T-cell leukemia virus-1 (HTLV-1), cellular and animal models have provided invaluable contributions in the knowledge of viral infection, transmission and progression of HTLV-associated diseases. HTLV-1 is the causative agent of the aggressive adult T-cell leukemia/lymphoma and inflammatory diseases such as the HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Cell models contribute to defining the role of HTLV proteins, as well as the mechanisms of cell-to-cell transmission of the virus. Otherwise, selected and engineered animal models are currently applied to recapitulate in vivo the HTLV-1 associated pathogenesis and to verify the effectiveness of viral therapy and host immune response. Here we review the current cell models for studying virus-host interaction, cellular restriction factors and cell pathway deregulation mediated by HTLV products. We recapitulate the most effective animal models applied to investigate the pathogenesis of HTLV-1-associated diseases such as transgenic and humanized mice, rabbit and monkey models. Finally, we summarize the studies on STLV and BLV, two closely related HTLV-1 viruses in animals. The most recent anticancer and HAM/TSP therapies are also discussed in view of the most reliable experimental models that may accelerate the translation from the experimental findings to effective therapies in infected patients.


Assuntos
Modelos Animais de Doenças , Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Animais , Infecções por HTLV-I/metabolismo , Infecções por HTLV-I/patologia , Infecções por HTLV-I/terapia , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Leucemia-Linfoma de Células T do Adulto/metabolismo , Leucemia-Linfoma de Células T do Adulto/patologia , Leucemia-Linfoma de Células T do Adulto/terapia , Camundongos , Camundongos Transgênicos
12.
Free Radic Biol Med ; 172: 264-272, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34129927

RESUMO

Aerobic organisms possess numerous antioxidant enzymatic families, including catalases, superoxide dismutases (SODs), peroxiredoxins (PRDXs), and glutathione peroxidases (GPXs), which work cooperatively to protect cells from an excess of reactive oxygen species (ROS) derived from endogenous metabolism or external microenvironment. Catalase, as well as other antioxidant enzymes, plays an important dichotomous role in cancer. Therefore, therapies aimed at either reverting the increased or further escalating catalase levels could be effective, depending on the metabolic landscape and on the redox status of cancer cells. This dichotomous role of catalase in cancers highlights the importance to deepen comprehensively the role and the regulation of this crucial antioxidant enzyme. The present review highlights the role of catalase in cancer and provides a comprehensive description of the molecular mechanisms associated with the multiple levels of catalase regulation.


Assuntos
Antioxidantes , Neoplasias , Catalase , Glutationa Peroxidase , Humanos , Peroxirredoxinas , Espécies Reativas de Oxigênio , Superóxido Dismutase
13.
Nanomaterials (Basel) ; 11(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803544

RESUMO

Magnetococcus marinus magnetosome-associated protein MamC, expressed as recombinant, has been proven to mediate the formation of novel biomimetic magnetic nanoparticles (BMNPs) that are successful drug nanocarriers for targeted chemotherapy and hyperthermia agents. These BMNPs present several advantages over inorganic magnetic nanoparticles, such as larger sizes that allow the former to have larger magnetic moment per particle, and an isoelectric point at acidic pH values, which allows both the stable functionalization of BMNPs at physiological pH value and the molecule release at acidic (tumor) environments, simply based on electrostatic interactions. However, difficulties for BMNPs cell internalization still hold back the efficiency of these nanoparticles as drug nanocarriers and hyperthermia agents. In the present study we explore the enhanced BMNPs internalization following upon their encapsulation by poly (lactic-co-glycolic) acid (PLGA), a Food and Drug Administration (FDA) approved molecule. Internalization is further optimized by the functionalization of the nanoformulation with the cell-penetrating TAT peptide (TATp). Our results evidence that cells treated with the nanoformulation [TAT-PLGA(BMNPs)] show up to 80% more iron internalized (after 72 h) compared to that of cells treated with BMNPs (40%), without any significant decrease in cell viability. This nanoformulation showing optimal internalization is further characterized. In particular, the present manuscript demonstrates that neither its magnetic properties nor its performance as a hyperthermia agent are significantly altered due to the encapsulation. In vitro experiments demonstrate that, following upon the application of an alternating magnetic field on U87MG cells treated with BMNPs and TAT-PLGA(BMNPs), the cytotoxic effect of BMNPs was not affected by the TAT-PLGA enveloping. Based on that, difficulties shown in previous studies related to poor cell uptake of BMNPs can be overcome by the novel nanoassembly described here.

14.
Neurol Sci ; 42(7): 2819-2827, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33170376

RESUMO

BACKGROUND: Myofibrillar myopathies (MFM) are a subgroup of protein aggregate myopathies (PAM) characterized by a common histological picture of myofibrillar dissolution, Z-disk disintegration, and accumulation of degradation products into inclusions. Mutations in genes encoding components of the Z-disk or Z-disk-associated proteins occur in some patients whereas in most of the cases, the causative gene defect is still unknown. We aimed to search for pathogenic mutations in genes not previously associated with MFM phenotype. METHODS: We performed whole-exome sequencing in four patients from three unrelated families who were diagnosed with PAM without aberrations in causative genes for MFM. RESULTS: In the first patient and her affected daughter, we identified a heterozygous p.(Arg89Cys) missense mutation in LMNA gene which has not been linked with PAM pathology before. In the second patient, a heterozygous p.(Asn4807Phe) mutation in RYR1 not previously described in PAM represents a novel, candidate gene with a possible causative role in the disease. Finally, in the third patient and his symptomatic daughter, we found a previously reported heterozygous p.(Cys30071Arg) mutation in TTN gene that was clinically associated with cardiac involvement. CONCLUSIONS: Our study identifies a new genetic background in PAM pathology and expands the clinical phenotype of known pathogenic mutations.


Assuntos
Miopatias Congênitas Estruturais , Agregados Proteicos , Feminino , Humanos , Mutação/genética , Miopatias Congênitas Estruturais/genética , Fenótipo , Sequenciamento do Exoma
15.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937893

RESUMO

Sarcopenia refers to a condition of progressive loss of skeletal muscle mass and function associated with a higher risk of falls and fractures in older adults. Musculoskeletal aging leads to reduced muscle mass and strength, affecting the quality of life in elderly people. In recent years, several studies contributed to improve the knowledge of the pathophysiological alterations that lead to skeletal muscle dysfunction; however, the molecular mechanisms underlying sarcopenia are still not fully understood. Muscle development and homeostasis require a fine gene expression modulation by mechanisms in which microRNAs (miRNAs) play a crucial role. miRNAs modulate key steps of skeletal myogenesis including satellite cells renewal, skeletal muscle plasticity, and regeneration. Here, we provide an overview of the general aspects of muscle regeneration and miRNAs role in skeletal mass homeostasis and plasticity with a special interest in their expression in sarcopenia and skeletal muscle adaptation to exercise in the elderly.


Assuntos
Autorrenovação Celular/genética , Exercício Físico/fisiologia , MicroRNAs/genética , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Sarcopenia/genética , Células Satélites de Músculo Esquelético/fisiologia , Animais , Homeostase/genética , Homeostase/fisiologia , Humanos , Regeneração/genética , Regeneração/fisiologia , Sarcopenia/fisiopatologia
16.
Mol Med Rep ; 22(3): 1695-1701, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32705183

RESUMO

Alterations in molecular signaling impair cellular functions and induce degenerative diseases. Among the factors affecting intracellular signaling pathways, oxidative stress serves an important role. Astaxanthin (3,3'­dihydroxy­ß, ß­carotene-4,4'­dione), a pigment found in aquatic organisms, belongs to the xanthophylls family. Astaxanthin exerts a strong antioxidant activity and is widely used in food, cosmetic and pharmaceutical industries. Oxidative stress damages bone homeostasis by producing reactive oxygen species and increasing the production of pro­resorption cytokines, such as interleukin (IL)­1, tumor necrosis factor­α and IL­6. Therefore, antioxidant molecules can counteract the negative effects of oxidative stress on bone. Accordingly, previous studies have demonstrated that supplementation of astaxanthin in bone contributes to the restoration of bone homeostasis. The present review summarizes the negative effects of oxidative stress in bone and explores the role of astaxanthin in counteracting skeletal injuries consequent to oxidative stress.


Assuntos
Doenças Ósseas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Doenças Ósseas/metabolismo , Humanos , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Xantofilas/farmacologia , Xantofilas/uso terapêutico
17.
J Alzheimers Dis ; 76(3): 831-843, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32568197

RESUMO

BACKGROUND: The progressive aging of the population will dramatically increase the burden of dementia related to Alzheimer's disease (AD) and other neurodegenerative disorders in the future. Because of the absence of drugs that can modify the neuropathological substrate of AD, research is focusing on the application of preemptive and disease-modifying strategies in the pre-symptomatic period of the disease. In this perspective, the identification of people with cognitive frailty (CF), i.e., those individuals with higher risk of developing dementia, on solid pathophysiological bases and with clear operational clinical criteria is of paramount importance. OBJECTIVE/METHODS: This hypothesis paper reviews the current definitions of CF, presents and discusses some of their limitations, and proposes a framework for updating and improving the conceptual and operational definition of the CF construct. RESULTS: The potential for reversibility of CF should be supported by the assessment of amyloid, tau, and neuronal damage biomarkers, especially in younger patients. Physical and cognitive components of frailty should be considered as separate entities, instead of part of a single macro-phenotype. CF should not be limited to the geriatric population, because trajectories of amyloid accumulation are supposed to start earlier than 65 years in AD. Operational criteria are needed to standardize assessment of CF. CONCLUSION: Based on the limitations of current CF definitions, we propose a revised one according to a multidimensional subtyping. This new definition might help stratifying CF patients for future trials to explore new lifestyle interventions or disease-modifying pharmacological strategies for AD and dementia.


Assuntos
Doença de Alzheimer/psicologia , Cognição/fisiologia , Disfunção Cognitiva/psicologia , Fragilidade/psicologia , Envelhecimento/fisiologia , Doença de Alzheimer/patologia , Amiloidose/metabolismo , Biomarcadores/análise , Humanos
19.
Genes (Basel) ; 11(4)2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276354

RESUMO

Alternative splicing is a regulatory mechanism essential for cell differentiation and tissue organization. More than 90% of human genes are regulated by alternative splicing events, which participate in cell fate determination. The general mechanisms of splicing events are well known, whereas only recently have deep-sequencing, high throughput analyses and animal models provided novel information on the network of functionally coordinated, tissue-specific, alternatively spliced exons. Heart development and cardiac tissue differentiation require thoroughly regulated splicing events. The ribonucleoprotein RBM20 is a key regulator of the alternative splicing events required for functional and structural heart properties, such as the expression of TTN isoforms. Recently, the polypyrimidine tract-binding protein PTBP1 has been demonstrated to participate with RBM20 in regulating splicing events. In this review, we summarize the updated knowledge relative to RBM20 and PTBP1 structure and molecular function; their role in alternative splicing mechanisms involved in the heart development and function; RBM20 mutations associated with idiopathic dilated cardiovascular disease (DCM); and the consequences of RBM20-altered expression or dysfunction. Furthermore, we discuss the possible application of targeting RBM20 in new approaches in heart therapies.


Assuntos
Doenças Cardiovasculares/genética , Coração/crescimento & desenvolvimento , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo/genética , Doenças Cardiovasculares/patologia , Éxons/genética , Coração/fisiopatologia , Humanos , Mutação/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
20.
Biomedicines ; 8(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121611

RESUMO

: Obesity adversely affects bone health by means of multiple mechanisms, e.g., alterations in bone-regulating hormones, inflammation, and oxidative stress. Substantial evidence supports the relationship between adiposity and bone disorders in overweight/obese individuals. It is well known that the balance between mutually exclusive differentiation of progenitor cells into osteoblasts or adipocytes is controlled by different agents, including growth factors, hormones, genetic and epigenetic factors. Furthermore, an association between vitamin D deficiency and obesity has been reported. On the other hand, regular physical activity plays a key role in weight control, in the reduction of obesity-associated risks and promotes osteogenesis. The aim of this review is to highlight relevant cellular and molecular aspects for over-weight containment. In this context, the modulation of progenitor cells during differentiation as well as the role of epigenetics and microbiota in obesity disease will be discussed. Furthermore, lifestyle changes including an optimized diet as well as targeted physical activity will be suggested as strategies for the treatment of obesity disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...