Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904307

RESUMO

In this study, novel flexible micro-scale humidity sensors were directly fabricated in graphene oxide (GO) and polyimide (PI) using ion beam writing without any further modifications, and then successfully tested in an atmospheric chamber. Two low fluences (3.75 × 1014 cm-2 and 5.625 × 1014 cm-2) of carbon ions with an energy of 5 MeV were used, and structural changes in the irradiated materials were expected. The shape and structure of prepared micro-sensors were studied using scanning electron microscopy (SEM). The structural and compositional changes in the irradiated area were characterized using micro-Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Rutherford back-scattering spectroscopy (RBS), energy-dispersive X-ray spectroscopy (EDS), and elastic recoil detection analysis (ERDA) spectroscopy. The sensing performance was tested at a relative humidity (RH) ranging from 5% to 60%, where the electrical conductivity of PI varied by three orders of magnitude, and the electrical capacitance of GO varied in the order of pico-farads. In addition, the PI sensor has proven long-term sensing stability in air. We demonstrated a novel method of ion micro-beam writing to prepare flexible micro-sensors that function over a wide range of humidity and have good sensitivity and great potential for widespread applications.

2.
Phys Chem Chem Phys ; 23(39): 22673-22684, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34604878

RESUMO

Self-assembled surface nanoscale structures on various ZnO facets are excellent templates for the deposition of semiconductor quantum dots and manipulation with surface optical transparency. In this work, we have modified the surface of c-, m- and a-plane ZnO single-crystals by high-energy W-ion irradiation with an energy of 27 MeV to observe the aspects of surface morphology on the optical properties. We kept ion fluences in the range from 5 × 109 cm-2 to 5 × 1011 cm-2 using the mode of single-ion implantation and the overlapping impact mode to see the effect of various regimes on surface modification. Rutherford backscattering spectroscopy in the channeling mode (RBS-C) and Raman spectroscopy have identified a slightly growing Zn-sublattice disorder in the irradiated samples with a more significant enhancement for the highest irradiation fluence. Simultaneously, the strong suppression of the main Raman modes and the propagation of the modes corresponding to polar Zn-O vibrations indicate disorder mainly in the O-sublattice in non-polar facets. The surface morphology, analysed by atomic force microscopy (AFM), shows significant changes after ion irradiation. The c- and a-plane ZnO exhibit the formation of small grains on the surface. The m-plane ZnO forms a sponge-like surface for lower fluences and grains for the highest fluence. The surface roughness itself increases with the irradiation fluence as shown by AFM measurement as well as spectroscopic ellipsometry (SE) analysis. The damage caused by high-energy irradiation leads to non-radiative processes and suppression of the near-band-edge peak as well as the deep-level emission peak in the photoluminescence spectra. Furthermore, the refraction index n and the extinction coefficient k of irradiated samples, determined by SE, have features corresponding to the particular exciton states blurred and are slightly lower in the optical bandgap region especially for the polar c-plane ZnO facet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...