Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21055, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030702

RESUMO

Descriptions of karyotypes of many animal species are currently available. In addition, there has been a significant increase in the number of sequenced genomes and an ever-improving quality of genome assembly. To close the gap between genomic and cytogenetic data we applied fluorescent in situ hybridization (FISH) and Hi-C technology to make the first full chromosome-level genome comparison of the guinea pig (Cavia porcellus), naked mole-rat (Heterocephalus glaber), and human. Comparative chromosome maps obtained by FISH with chromosome-specific probes link genomic scaffolds to individual chromosomes and orient them relative to centromeres and heterochromatic blocks. Hi-C assembly made it possible to close all gaps on the comparative maps and to reveal additional rearrangements that distinguish the karyotypes of the three species. As a result, we integrated the bioinformatic and cytogenetic data and adjusted the previous comparative maps and genome assemblies of the guinea pig, naked mole-rat, and human. Syntenic associations in the two hystricomorphs indicate features of their putative ancestral karyotype. We postulate that the two approaches applied in this study complement one another and provide complete information about the organization of these genomes at the chromosome level.


Assuntos
Genoma , Ratos-Toupeira , Humanos , Cobaias , Animais , Sintenia , Hibridização in Situ Fluorescente , Cariótipo , Ratos-Toupeira/genética
2.
Genes (Basel) ; 14(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36833416

RESUMO

Constitutive-heterochromatin placement in the genome affects chromosome structure by occupying centromeric areas and forming large blocks. To investigate the basis for heterochromatin variation in the genome, we chose a group of species with a conserved euchromatin part: the genus Martes [stone marten (M. foina, 2n = 38), sable (M. zibellina, 2n = 38), pine marten (M. martes, 2n = 38), and yellow-throated marten (M. flavigula, 2n = 40)]. We mined the stone marten genome for the most abundant tandem repeats and selected the top 11 macrosatellite repetitive sequences. Fluorescent in situ hybridization revealed distributions of the tandemly repeated sequences (macrosatellites, telomeric repeats, and ribosomal DNA). We next characterized the AT/GC content of constitutive heterochromatin by CDAG (Chromomycin A3-DAPI-after G-banding). The euchromatin conservatism was shown by comparative chromosome painting with stone marten probes in newly built maps of the sable and pine marten. Thus, for the four Martes species, we mapped three different types of tandemly repeated sequences critical for chromosome structure. Most macrosatellites are shared by the four species with individual patterns of amplification. Some macrosatellites are specific to a species, autosomes, or the X chromosome. The variation of core macrosatellites and their prevalence in a genome are responsible for the species-specific variation of the heterochromatic blocks.


Assuntos
Carnívoros , Mustelidae , Animais , Mustelidae/genética , Heterocromatina , Hibridização in Situ Fluorescente , Eucromatina , Carnívoros/genética , Estruturas Cromossômicas
3.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361851

RESUMO

Tandemly arranged and dispersed repetitive DNA sequences are important structural and functional elements that make up a significant portion of vertebrate genomes. Using high throughput, low coverage whole genome sequencing followed by bioinformatics analysis, we have identified seven major tandem repetitive DNAs and two fragments of LTR retrotransposons in the genome of the Nile crocodile (Crocodylus niloticus, 2n = 32). The repeats showed great variability in structure, genomic organization, and chromosomal distribution as revealed by fluorescence in situ hybridization (FISH). We found that centromeric and pericentromeric heterochromatin of C. niloticus is composed of previously described in Crocodylus siamensis CSI-HindIII and CSI-DraI repetitive sequence families, a satellite revealed in Crocodylus porosus, and additionally contains at least three previously unannotated tandem repeats. Both LTR sequences identified here belong to the ERV1 family of endogenous retroviruses. Each pericentromeric region was characterized by a diverse set of repeats, with the exception of chromosome pair 4, in which we found only one type of satellite. Only a few repeats showed non-centromeric signals in addition to their centromeric localization. Mapping of 18S-28S ribosomal RNA genes and telomeric sequences (TTAGGG)n did not demonstrate any co-localization of these sequences with revealed centromeric and pericentromeric heterochromatic blocks.


Assuntos
Jacarés e Crocodilos , Animais , Jacarés e Crocodilos/genética , Hibridização in Situ Fluorescente , Centrômero/genética , Sequências Repetitivas de Ácido Nucleico , RNA Ribossômico 18S/genética
4.
Mol Cytogenet ; 14(1): 47, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34607577

RESUMO

BACKGROUND: There are many reports on rearrangements occurring separately in the regions of chromosomes 9p and 15q affected in the case under study. 15q duplication syndrome is caused by the presence of at least one extra maternally derived copy of the Prader-Willi/Angelman critical region. Trisomy 9p is the fourth most frequent chromosome anomaly with a clinically recognizable syndrome often accompanied by intellectual disability. Here we report a new case of a patient with maternally derived unique complex sSMC resulting in partial trisomy of both chromosomes 9 and 15 associated with intellectual disability. CASE PRESENTATION: We characterise a supernumerary derivative chromosome 15: 47,XY,+der(15)t(9;15)(p21.2;q13.2), likely resulting from 3:1 malsegregation during maternal gametogenesis. Chromosomal analysis showed that a phenotypically normal mother is a carrier of balanced translocation t(9;15)(p21.1;q13.2). Her 7-year-old son showed signs of intellectual disability and a number of physical abnormalities including bilateral cryptorchidism and congenital megaureter. The child's magnetic resonance imaging showed changes in brain volume and in structural and functional connectivity revealing phenotypic changes caused by the presence of the extra chromosome material, whereas the mother's brain MRI was normal. Sequence analyses of the microdissected der(15) chromosome detected two breakpoint regions: HSA9:25,928,021-26,157,441 (9p21.2 band) and HSA15:30,552,104-30,765,905 (15q13.2 band). The breakpoint region on chromosome HSA9 is poor in genetic features with several areas of high homology with the breakpoint region on chromosome 15. The breakpoint region on HSA15 is located in the area of a large segmental duplication. CONCLUSIONS: We discuss the case of these phenotypic and brain MRI features in light of reported signatures for 9p partial trisomy and 15 duplication syndromes and analyze how the genomic characteristics of the found breakpoint regions have contributed to the origin of the derivative chromosome. We recommend MRI for all patients with a developmental delay, especially in cases with identified rearrangements, to accumulate more information on brain phenotypes related to chromosomal syndromes.

5.
Genes (Basel) ; 12(7)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202749

RESUMO

The taxonomy of the genus Calomyscus remains controversial. According to the latest systematics the genus includes eight species with great karyotypic variation. Here, we studied karyotypes of 14 Calomyscus individuals from different regions of Iran and Turkmenistan using a new set of chromosome painting probes from a Calomyscus sp. male (2n = 46, XY; Shahr-e-Kord-Soreshjan-Cheshme Maiak Province). We showed the retention of large syntenic blocks in karyotypes of individuals with identical chromosome numbers. The only rearrangement (fusion 2/21) differentiated Calomyscus elburzensis, Calomyscus mystax mystax, and Calomyscus sp. from Isfahan Province with 2n = 44 from karyotypes of C. bailwardi, Calomyscus sp. from Shahr-e-Kord, Chahar Mahal and Bakhtiari-Aloni, and Khuzestan-Izeh Provinces with 2n = 46. The individuals from Shahdad tunnel, Kerman Province with 2n = 51-52 demonstrated non-centric fissions of chromosomes 4, 5, and 6 of the 46-chromosomal form with the formation of separate small acrocentrics. A heteromorphic pair of chromosomes in a specimen with 2n = 51 resulted from a fusion of two autosomes. C-banding and chromomycin A3-DAPI staining after G-banding showed extensive heterochromatin variation between individuals.


Assuntos
Cromossomos de Mamíferos/genética , Cricetinae/genética , Análise Citogenética , Evolução Molecular , Animais , Bandeamento Cromossômico , Cricetinae/classificação , Heterocromatina/genética , Hibridização in Situ Fluorescente , Irã (Geográfico) , Cariótipo , Camundongos/classificação , Camundongos/genética , Filogeografia , Especificidade da Espécie , Sintenia/genética , Turcomenistão
6.
Philos Trans R Soc Lond B Biol Sci ; 376(1833): 20200099, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34304596

RESUMO

Whole-chromosome fusions play a major role in the karyotypic evolution of reptiles. It has been suggested that certain chromosomes tend to fuse with sex chromosomes more frequently than others. However, the comparative genomic synteny data are too scarce to draw strong conclusions. We obtained and sequenced chromosome-specific DNA pools of Sceloporus malachiticus, an iguanian species which has experienced many chromosome fusions. We found that four of seven lineage-specific fusions involved sex chromosomes, and that certain syntenic blocks which constitute the sex chromosomes, such as the homologues of the Anolis carolinensis chromosomes 11 and 16, are repeatedly involved in sex chromosome formation in different squamate species. To test the hypothesis that the karyotypic shift could be associated with changes in recombination patterns, we performed a synaptonemal complex analysis in this species and in Sceloporus variabilis (2n = 34). It revealed that the sex chromosomes in S. malachiticus had two distal pseudoautosomal regions and a medial differentiated region. We found that multiple fusions little affected the recombination rate in S. malachiticus. Our data confirm more frequent involvement of certain chromosomes in sex chromosome formation, but do not reveal a connection between the gonosome-autosome fusions and the evolution of recombination rate. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.


Assuntos
Evolução Biológica , Cariótipo , Lagartos/genética , Cromossomos Sexuais/genética , Animais , Masculino , Complexo Sinaptonêmico/genética
7.
Sci Rep ; 11(1): 10557, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006914

RESUMO

The genus status of Urocricetus was defined recently based on morphological and molecular data. Even though the amount of evidence for a separate phylogenetic position of this genus among Cricetinae continues to increase, there is still no consensus on its relationship to other groups. Here we give the first comprehensive description of the U. kamensis karyotype (2n = 30, NFa = 50) including results of comparative cytogenetic analysis and detailed examination of its phylogenetic position by means of numerous molecular markers. The molecular data strongly indicated that Urocricetus is a distant sister group to Phodopus. Comparative cytogenetic data showed significant reorganization of the U. kamensis karyotype compared to karyotypes of all other hamsters investigated earlier. The totality of findings undoubtedly means that Urocricetus belongs to a separate divergent lineage of Cricetinae.


Assuntos
Cricetinae/genética , Cariotipagem , Animais , Bandeamento Cromossômico , Cricetinae/classificação , Feminino , Masculino , Filogenia , Especificidade da Espécie
8.
Life Sci ; 277: 119494, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33862109

RESUMO

AIMS: The food-born trematode Opisthorchis felineus colonizes bile ducts of the liver of fish-eating mammals including humans. There is growing evidence that this liver fluke is a risk factor for cholangiocarcinoma (CCA). Cancer cell lines are necessary for drug screening and for identifying protein markers of CCA. The aim was to establish a cell line derived from cholangiocarcinoma associated with opisthorchiasis felinea. MAIN METHODS: Allotransplantation, immunohistochemistry, karyotype analysis, cell culture techniques, immunocytochemistry and real-time PCR. KEY FINDINGS: Here we repot the establishment of first CCA cell line, CCA-OF, from a primary tumor of an experimental CCA in Syrian hamsters treated with low doses of dimethyl nitrosamine and associated with O. felineus infection. The cell line was found to be allotransplantable. Expression of epithelial and mesenchymal markers (cytokeratin 7, glycosyltransferase exostosin 1, Ca2+-dependent phospholipid-binding protein annexin A1 and vimentin) was demonstrated by immunostaining of the primary tumors, CCA-OF cells, and allotransplants. CCA-OF cells were found to express presumed CCA biomarkers previously detected in both human and experimental tumors associated with the liver fluke infection. The cells were diploid-like (2n = 42-46) with complex chromosomal rearrangements and have morphological features of epithelial-like cells. The usefulness of the CCA-OF cell model for antitumor activity testing was demonstrated by an analysis of effects of resveratrol treatment. It was shown that resveratrol treatment inhibited the proliferation and the migration ability of CCA-OF cells. SIGNIFICANCE: Thus, the allotransplantable CCA-OF cell line can be used in studies on helminth-associated cholangiocarcinogenesis and for the testing of antitumor drugs.


Assuntos
Colangiocarcinoma/metabolismo , Opistorquíase/metabolismo , Animais , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Carcinogênese/patologia , Linhagem Celular , Cricetinae/metabolismo , Células Epiteliais/metabolismo , Fígado/metabolismo , Opistorquíase/complicações , Opistorquíase/patologia
9.
Cytogenet Genome Res ; 161(1-2): 32-42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33677437

RESUMO

Polyploid species represent a challenge for both cytogenetic and genomic studies due to their high chromosome numbers and the morphological similarity between their paralogous chromosomes. This paper describes the use of low-coverage high-throughput sequencing to identify the 14 most abundant tandemly arranged repetitive elements in the paleotetraploid genome of the crucian carp (Carassius carassius, 2n = 100). These repetitive elements were then used for molecular cytogenetic studies of a closely related functionally triploid form of the Prussian carp (Carassius gibelio, 3n = 150 + Bs) and a relatively distant diploid species, the tench (Tinca tinca, 2n = 48). According to their distribution on the chromosomes of the 3 aforementioned species, the repetitive elements here identified can be divided into 5 groups: (1) those specific to a single genomic locus in both Carassius species, despite the recent carp-specific genome duplication; (2) those located in a single genomic locus of T. tinca, but amplified in one or both Carassius species; (3) those massively amplified in the B chromosomes of C. gibelio; (4) those located in a single locus in C. gibelio, but amplified in many blocks in C. carassius; and (5) those located in multiple pericentromeric loci in both Carassius species. Our data indicate that some of the repetitive elements are highly conserved in cyprinoid species and may serve as good cytogenetic and genomic markers for discriminating paralogous chromosomes, while others are evolutionarily recent, and their amplification may be related to the last whole-genome duplication event.


Assuntos
Carpas/genética , DNA/genética , Ploidias , Animais , Citogenética , Diploide , Feminino , Duplicação Gênica , Genoma , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Especificidade da Espécie
10.
Genes (Basel) ; 11(11)2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233736

RESUMO

Polyploid genomes present a challenge for cytogenetic and genomic studies, due to the high number of similar size chromosomes and the simultaneous presence of hardly distinguishable paralogous elements. The karyotype of the Siberian sturgeon (Acipenser baerii) contains around 250 chromosomes and is remarkable for the presence of paralogs from two rounds of whole-genome duplications (WGD). In this study, we applied the sterlet-derived acipenserid satDNA-based whole chromosome-specific probes to analyze the Siberian sturgeon karyotype. We demonstrate that the last genome duplication event in the Siberian sturgeon was accompanied by the simultaneous expansion of several repetitive DNA families. Some of the repetitive probes serve as good cytogenetic markers distinguishing paralogous chromosomes and detecting ancestral syntenic regions, which underwent fusions and fissions. The tendency of minisatellite specificity for chromosome size groups previously observed in the sterlet genome is also visible in the Siberian sturgeon. We provide an initial physical chromosome map of the Siberian sturgeon genome supported by molecular markers. The application of these data will facilitate genomic studies in other recent polyploid sturgeon species.


Assuntos
Cromossomos , Peixes/genética , Sequências de Repetição em Tandem/genética , Animais , Sequência de Bases , Bandeamento Cromossômico/métodos , Mapeamento Cromossômico/métodos , Sequência Conservada , Sondas de DNA , DNA Satélite , Hibridização in Situ Fluorescente , Cariotipagem/métodos , Repetições de Microssatélites , Poliploidia
11.
Sci Rep ; 10(1): 13235, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764633

RESUMO

Euchromatic segments of the X chromosomes of placental mammals are the most conservative elements of the karyotype, only rarely subjected to either inter- or intrachromosomal rearrangements. Here, using microdissection-derived set of region-specific probes of Terricola savii we detailed the evolutionary rearrangements found in X chromosomes in 20 vole species (Arvicolinae, Rodentia). We show that the evolution of X chromosomes in this taxon was accompanied by multiple para- and pericentric inversions and centromere shifts. The contribution of intrachromosomal rearrangements to the karyotype evolution of Arvicolinae species was approximately equivalent in both the separate autosomal conserved segments and the X chromosomes. Intrachromosmal rearrangements and structural reorganization of the X chromosomes was likely accompanied by an accumulation, distribution, and evolution of repeated sequences.


Assuntos
Arvicolinae/genética , Coloração Cromossômica/veterinária , Cromossomo X/genética , Animais , Inversão Cromossômica , Evolução Molecular , Microdissecção , Sequências Repetitivas de Ácido Nucleico
12.
Cells ; 9(6)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575592

RESUMO

In Drosophila salivary gland polytene chromosomes, a substantial portion of heterochromatin is underreplicated. The combination of mutations SuURES and Su(var)3-906 results in the polytenization of a substantial fraction of unique and moderately repeated sequences but has almost no effect on satellite DNA replication. The Rap1 interacting factor 1 (Rif) protein is a conserved regulator of replication timing, and in Drosophila, it affects underreplication in polytene chromosomes. We compared the morphology of pericentromeric regions and labeling patterns of in situ hybridization of heterochromatin-specific DNA probes between wild-type salivary gland polytene chromosomes and the chromosomes of Rif1 mutants and SuUR Su(var)3-906 double mutants. We show that, despite general similarities, heterochromatin zones exist that are polytenized only in the Rif1 mutants, and that there are zones that are under specific control of Su(var)3-9. In the Rif1 mutants, we found additional polytenization of the largest blocks of satellite DNA (in particular, satellite 1.688 of chromosome X and simple satellites in chromosomes X and 4) as well as partial polytenization of chromosome Y. Data on pulsed incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into polytene chromosomes indicated that in the Rif1 mutants, just as in the wild type, most of the heterochromatin becomes replicated during the late S phase. Nevertheless, a significantly increased number of heterochromatin replicons was noted. These results suggest that Rif1 regulates the activation probability of heterochromatic origins in the satellite DNA region.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Heterocromatina/metabolismo , Glândulas Salivares/metabolismo , Animais , Drosophila melanogaster/genética , Mutação/genética , Cromossomos Politênicos/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
13.
Genes (Basel) ; 11(4)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235544

RESUMO

The mandarin vole, Lasiopodomys mandarinus, is one of the most intriguing species among mammals with non-XX/XY sex chromosome system. It combines polymorphism in diploid chromosome numbers, variation in the morphology of autosomes, heteromorphism of X chromosomes, and several sex chromosome systems the origin of which remains unexplained. Here we elucidate the sex determination system in Lasiopodomys mandarinus vinogradovi using extensive karyotyping, crossbreeding experiments, molecular cytogenetic methods, and single chromosome DNA sequencing. Among 205 karyotyped voles, one male and three female combinations of sex chromosomes were revealed. The chromosome segregation pattern and karyomorph-related reproductive performances suggested an aberrant sex determination with almost half of the females carrying neo-X/neo-Y combination. The comparative chromosome painting strongly supported this proposition and revealed the mandarin vole sex chromosome systems originated due to at least two de novo autosomal translocations onto the ancestral X chromosome. The polymorphism in autosome 2 was not related to sex chromosome variability and was proved to result from pericentric inversions. Sequencing of microdissection derived of sex chromosomes allowed the determination of the coordinates for syntenic regions but did not reveal any Y-specific sequences. Several possible sex determination mechanisms as well as interpopulation karyological differences are discussed.


Assuntos
Arvicolinae/genética , Evolução Molecular , Marcadores Genéticos , Polimorfismo Genético , Cromossomos Sexuais/genética , Animais , Arvicolinae/classificação , Feminino , Genética Populacional , Masculino , Processos de Determinação Sexual
14.
Cytogenet Genome Res ; 160(3): 134-140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32092753

RESUMO

Reptiles show a remarkable diversity of sex determination mechanisms and sex chromosome systems, derived from different autosomal pairs. The origin of the ZW sex chromosomes of Lacerta agilis, a widespread Eurasian lizard species, is a matter of discussion: is it a small macrochromosome from the 11-18 group common to all lacertids, or does this species have a unique ZW pair derived from the large chromosome 5? Using independent molecular cytogenetic methods, we investigated the karyotype of L. agilis exigua from Siberia, Russia, to identify the sex chromosomes. FISH with a flow-sorted chromosome painting probe derived from L. strigata and specific to chromosomes 13, 14, and Z confirmed that the Z chromosome of L. agilis is a small macrochromosome, the same as in L. strigata. FISH with the telomeric probe showed an extensive accumulation of the telomere-like repeat in the W chromosome in agreement with previous studies, excluding the possibility that the lineages of L. agilis studied in different works could have different sex chromosome systems due to a putative intra-species polymorphism. Our results reinforce the idea of the stability of the sex chromosomes and lack of evidence for sex-chromosome turnovers in known species of Lacertidae.


Assuntos
Evolução Biológica , Lagartos/genética , Sequências Repetitivas de Ácido Nucleico/genética , Cromossomos Sexuais/genética , Animais , Hibridização in Situ Fluorescente , Federação Russa
15.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510061

RESUMO

The involvement of chromosome changes in the initial steps of speciation is controversial. Here we examine diversification trends within the mole voles Ellobius, a group of subterranean rodents. The first description of their chromosome variability was published almost 40 years ago. Studying the G-band structure of chromosomes in numerous individuals revealed subsequent homologous, step-by-step, Robertsonian translocations, which changed diploid numbers from 54 to 30. Here we used a molecular cytogenetic strategy which demonstrates that chromosomal translocations are not always homologous; consequently, karyotypes with the same diploid number can carry different combinations of metacentrics. We further showed that at least three chromosomal forms with 2n = 34 and distinct metacentrics inhabit the Pamir-Alay mountains. Each of these forms independently hybridized with E. tancrei, 2n = 54, forming separate hybrid zones. The chromosomal variations correlate slightly with geographic barriers. Additionally, we confirmed that the emergence of partial or monobrachial homology appeared to be a strong barrier for hybridization in nature, in contradistinction to experiments which we reported earlier. We discuss the possibility of whole arm reciprocal translocations for mole voles. Our findings suggest that chromosomal translocations lead to diversification and speciation.


Assuntos
Arvicolinae/genética , Cromossomos de Mamíferos/genética , Especiação Genética , Variação Genética , Translocação Genética/genética , Animais , Arvicolinae/classificação , Bandeamento Cromossômico , Diploide , Geografia , Hibridização Genética , Cariótipo , Tadjiquistão
16.
Comp Cytogenet ; 13(2): 147-177, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275526

RESUMO

Evolutionary history and taxonomic position for cryptic species may be clarified by using molecular and cytogenetic methods. The subterranean rodent, the Alay mole vole Ellobiusalaicus Vorontsov et al., 1969 is one of three sibling species constituting the subgenus Ellobius Fischer, 1814, all of which lost the Y chromosome and obtained isomorphic XX sex chromosomes in both males and females. E.alaicus is evaluated by IUCN as a data deficient species because their distribution, biology, and genetics are almost unknown. We revealed specific karyotypic variability (2n = 52-48) in E.alaicus due to different Robertsonian translocations (Rbs). Two variants of hybrids (2n = 53, different Rbs) with E.tancrei Blasius, 1884 were found at the Northern slopes of the Alay Ridge and in the Naryn district, Kyrgyzstan. We described the sudden change in chromosome numbers from 2n = 50 to 48 and specific karyotype structure for mole voles, which inhabit the entrance to the Alay Valley (Tajikistan), and revealed their affiliation as E.alaicus by cytochrome b and fragments of nuclear XIST and Rspo1 genes sequencing. To date, it is possible to expand the range of E.alaicus from the Alay Valley (South Kyrgyzstan) up to the Ferghana Ridge and the Naryn Basin, Tien Shan at the north-east and to the Pamir-Alay Mountains (Tajikistan) at the west. The closeness of E.tancrei and E.alaicus is supported, whereas specific chromosome and molecular changes, as well as geographic distribution, verified the species status for E.alaicus. The case of Ellobius species accented an unevenness in rates of chromosome and nucleotide changes along with morphological similarity, which is emblematic for cryptic species.

17.
Aging (Albany NY) ; 11(9): 2852-2873, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085801

RESUMO

DNA repair capacity in cells of naked mole rat (Hgl), a species known for its longevity and resistance to cancer, is still poorly characterized. Here, using the whole-cell extracts (WCEs) of Hgl, mouse and human cells, we studied the interrelation between DNA synthesis on the substrates of base excision repair and the activity of poly(ADP-ribose) polymerases (PARPs) responsible for the transfer of the ADP-ribose moieties onto different targets. The level of PAR synthesis was more than ten-fold higher in human WCE as compared to rodent WCEs, while the efficiency of DNA synthesis was comparable. Under conditions of PAR synthesis, the efficiency of DNA synthesis was only slightly enhanced in all extracts and in mouse WCEs unusual products of the primer elongation were detected. The results obtained with WCEs, recombinant proteins and recently found ability of PARPs to attach the ADP-ribose moieties to DNA allowed us to attribute these products to primer mono(ADP-ribosyl)ation (MARylation) at the 5'-terminal phosphate by PARP3 during the DNA synthesis. PARP1/PARP2 can then transfer the ADP-ribose moieties onto initial ADP-ribose. Our results suggest that MARylation/PARylation of DNA in the extracts depends on the ratios between PARPs and can be controlled by DNA-binding proteins.


Assuntos
Extratos Celulares , Reparo do DNA/fisiologia , Poli ADP Ribosilação/fisiologia , Animais , DNA/biossíntese , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Ratos-Toupeira , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo
18.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(1): 156-164, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29716429

RESUMO

The sterlet (Acipenser ruthenus Linnaeus, 1758) is a relatively small sturgeon widely distributed in Eurasian rivers from the Danube to the Yenisei. During the twentieth century, all wild sterlet populations have declined due to anthropogenic factors including: overfishing, poaching, construction of dams, and pollution. Despite the necessity of characterization both wild and captive stocks, few studies of population genetics have been performed thus far. Here we studied the genetic diversity and geographic structure of sterlet populations across the eastern range - Ob-Irtysh and Yenisei basins - by sequencing a 628-bp fragment of mitochondrial DNA control region. We identified 98 new haplotypes, delineated 12 haplogroups and estimated the time of basal haplogroup divergence within the species as over 8 million years ago. Our data suggest that Ob-Irtysh and Yenisei populations are isolated from each other and much lower genetic diversity is present in the Yenisei population than in the Ob-Irtysh population. Our data imply that sterlet populations in Siberian rivers underwent bottleneck or fragmentation, followed by subsequent population expansion. The data obtained here are important for sterlet population monitoring and restocking management.


Assuntos
Espécies em Perigo de Extinção , Peixes/genética , Polimorfismo Genético , Animais , DNA Mitocondrial/genética , Evolução Molecular , Peixes/classificação , Haplótipos , Filogenia , Filogeografia , Sibéria
19.
Comp Cytogenet ; 12(3): 361-372, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275928

RESUMO

Gymnures are an ancient group of small insectivorous mammals and are characterized by a controversial taxonomic status and the lack of a description of karyotypes for certain species. In this study, conventional cytogenetic techniques (Giemsa, CBG- and GTG-banding, Ag-NOR), CMA3-DAPI staining, and fluorescent in situ hybridization (FISH) with telomeric DNA probes were used to examine for the first time the karyotypes of lesser gymnures of group Hylomyssuillus Müller, 1840 from northern and southern Vietnam. All studied specimens had karyotypes with 2n=48, NFa=64. C-positive heterochromatic blocks existed in centromeric regions of 7 bi-armed autosomes and the submetacentric X chromosome. The Y chromosome is a C-positive and dot-like. The nucleolus organizer regions resided terminally on the short arms of 2 small bi-armed pairs. Positive signals at the telomeres of all chromosomes were revealed by FISH. CMA3-positive blocks were localized on the telomeric and pericentric regions of most bi-armed and acrocentric chromosomes. Despite the large genetic distances between Hylomys Müller, 1840, lesser gymnures from H.suillus-group from northern and southern Vietnam have similar karyotypic characteristics.

20.
Sci Rep ; 8(1): 14980, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297915

RESUMO

Remarkably stable genomic chromosome elements (evolutionary conserved segments or syntenies) are the basis of large-scale chromosome architecture in vertebrate species. However, these syntenic elements harbour evolutionary important changes through intrachromosomal rearrangements such as inversions and centromere repositioning. Here, using FISH with a set of 20 region-specific probes on a wide array of 28 species, we analyzed evolution of three conserved syntenic regions of the Arvicolinae ancestral karyotype. Inside these syntenies we uncovered multiple, previously cryptic intrachromosomal rearrangements. Although in each of the three conserved blocks we found inversions and centromere repositions, the blocks experienced different types of rearrangements. In two syntenies centromere repositioning predominated, while in the third region, paracentric inversions were more frequent, whereas pericentric inversions were not detected. We found that some of the intrachromosomal rearrangements, mainly paracentric inversions, were synapomorphic for whole arvicoline genera or tribes: genera Alexandromys and Microtus, tribes Ellobini and Myodini. We hypothesize that intrachromosomal rearrangements within conserved syntenic blocks are a major evolutionary force modulating genome architecture in species-rich and rapidly-evolving rodent taxa. Inversions and centromere repositioning may impact speciation and provide a potential link between genome evolution, speciation, and biogeography.


Assuntos
Arvicolinae/genética , Rearranjo Gênico/genética , Especiação Genética , Sintenia/genética , Animais , Coloração Cromossômica , Cromossomos de Mamíferos/genética , Evolução Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...