Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 52(12): 1909-1924, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35598160

RESUMO

The hallmark of DCs is their potent and outstanding capacity to activate naive resting T cells. As such, DCs are the sentinels of the immune system and instrumental for the induction of immune responses. This is one of the reasons, why DCs became the focus of immunotherapeutical strategies to fight infections, cancer, and autoimmunity. Besides the exploration of adoptive DC-therapy for which DCs are generated from monocytes or purified in large numbers from the blood, alternative approaches were developed such as antigen targeting of DCs. The idea behind this strategy is that DCs resident in patients' lymphoid organs or peripheral tissues can be directly loaded with antigens in situ. The proof of principle came from mouse models; subsequent translational studies confirmed the potential of this therapy. The first clinical trials demonstrated feasibility and the induction of T-cell immunity in patients. This review will cover: (i) the historical aspects of antigen targeting, (ii) briefly summarize the biology of DCs and the immunological functions upon which this concept rests, (iii) give an overview on attempts to target DC receptors with antibodies or (glycosylated) ligands, and finally, (iv) discuss the translation of antigen targeting into clinical therapy.


Assuntos
Células Dendríticas , Imunidade , Animais , Camundongos
2.
Eur J Immunol ; 52(11): 1829-1841, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34932821

RESUMO

Human skin is a preferred vaccination site as it harbors multiple dendritic cell (DC) subsets, which display distinct C-type lectin receptors (CLR) that recognize pathogens. Antigens can be delivered to CLR by antibodies or ligands to boost antigen-specific immune responses. This concept has been established in mouse models but detailed insights into the functional consequences of antigen delivery to human skin DC in situ are sparse. In this study, we cloned and produced an anti-human Langerin antibody conjugated to the EBV nuclear antigen 1 (EBNA1). We confirmed specific binding of anti-Langerin-EBNA1 to Langerhans cells (LC). This novel LC-based vaccine was then compared to an existing anti-DEC-205-EBNA1 fusion protein by loading LC in epidermal cell suspensions before coculturing them with autologous T cells. After restimulation with EBNA1-peptides, we detected elevated levels of IFN-γ- and TNF-α-positive CD4+ T cells with both vaccines. When we injected the fusion proteins intradermally into human skin explants, emigrated skin DC targeted via DEC-205-induced cytokine production by T cells, whereas the Langerin-based vaccine failed to do so. In summary, we demonstrate that antibody-targeting approaches via the skin are promising vaccination strategies, however, further optimizations of vaccines are required to induce potent immune responses.


Assuntos
Células Dendríticas , Células de Langerhans , Lectinas Tipo C , Vacinas , Animais , Humanos , Camundongos , Antígenos/metabolismo , Células de Langerhans/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose , Pele
3.
Exp Dermatol ; 30(9): 1279-1289, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33797121

RESUMO

Dendritic cells (DC) are promising targets for immunotherapy of cancer. Clinically, immunization against cancer antigens by means of the most potent antigen-presenting cells, that is DC, remains an important treatment option in combination with the modern immune checkpoint approaches. Instead of adoptively transferring in vitro monocyte-derived DC, they can also be loaded in situ by antibody-mediated targeting of antigen. Conventionally, these vaccines are delivered by classical intradermal injections. Here, we tested an alternative approach, namely laser-assisted epicutaneous immunization. With an infrared laser ("Precise Laser Epidermal System"/P.L.E.A.S.E.® Laser System), we created micropores in human skin and applied monoclonal antibodies (mAbs) against C-type lectins, for example DEC-205/CD205 and Langerin/CD207. Optimal parameters for formation of pores in epidermis and dermis were determined. We could induce pores of defined depths without enhanced apoptosis around them. Antibodies applied epicutaneously to the laser-porated skin could be detected both in Langerhans cells (LC) in situ in the epidermis and in migratory skin DC subsets from short term human skin explant culture, demonstrating uptake and transport of Langerin and DEC-205 mAbs. Efficacy of targeting was similar between the different laser treatments and pore depths. Thus, laser-assisted epicutaneous immunization may be a valuable alternative to intradermal injection, yet the loading efficacy of DC needs to be further improved.


Assuntos
Administração Cutânea , Anticorpos/imunologia , Antígenos CD/imunologia , Células Dendríticas/imunologia , Imunização/métodos , Células de Langerhans/imunologia , Lasers , Lectinas Tipo C/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Receptores de Superfície Celular/imunologia , Adulto , Idoso , Feminino , Humanos , Masculino , Adulto Jovem
4.
J Invest Dermatol ; 141(1): 84-94.e6, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32522485

RESUMO

Langerhans cells (LCs) in the skin are a first line of defense against pathogens but also play an essential role in skin homeostasis. Their exclusive expression of the C-type lectin receptor Langerin makes them prominent candidates for immunotherapy. For vaccine testing, an easily accessible cell platform would be desirable as an alternative to the time-consuming purification of LCs from human skin. Here, we present such a model and demonstrate that monocytes in the presence of GM-CSF, TGF-ß1, and the Notch ligand DLL4 differentiate within 3 days into CD1a+Langerin+cells containing Birbeck granules. RNA sequencing of these monocyte-derived LCs (moLCs) confirmed gene expression of LC-related molecules, pattern recognition receptors, and enhanced expression of genes involved in the antigen-presenting machinery. On the protein level, moLCs showed low expression of costimulatory molecules but prominent expression of C-type lectin receptors. MoLCs can be matured, secrete IL-12p70 and TNF-α, and stimulate proliferation and cytokine production in allogeneic CD4+ and CD8+ T cells. In regard to vaccine testing, a recently characterized glycomimetic Langerin ligand conjugated to liposomes demonstrated specific and fast internalization into moLCs. Hence, these short-term in vitro‒generated moLCs represent an interesting tool to screen LC-based vaccines in the future.


Assuntos
Células Dendríticas/imunologia , Células de Langerhans/imunologia , Ativação Linfocitária/imunologia , Monócitos/imunologia , Pele/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/patologia , Humanos , Células de Langerhans/patologia , Fenótipo , Pele/patologia
5.
J Dtsch Dermatol Ges ; 18(11): 1270-1277, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33197129

RESUMO

BACKGROUND AND OBJECTIVES: We examined retrospectively whether the combination of standard dacarbazine (DTIC) and/or fotemustine chemotherapy and autologous peptide-loaded dendritic cell (DC) vaccination may improve survival of stage IV melanoma patients. Furthermore, a small cohort of long-term survivors was studied in more detail. PATIENTS AND METHODS: Between 1998 and 2008, 41 patients were vaccinated at least three times with DCs while receiving chemotherapy and compared to all other 168 patients in our database who only received chemotherapy (1993-2008). RESULTS: Median life expectancy of patients receiving additional DC-vaccination was 18 months, compared to eleven months for patients under standard chemotherapy alone. In contrast to patients with other haplotypes, the HLA-A1/A1 subset of DC-treated patients showed significantly lower median survival (12 vs. 25 months). Autoantibodies were frequently detected in serum of both vaccinated and non-vaccinated patients, and there was no correlation between titers, loss or appearance of autoantibodies and survival. Additionally, phenotyping of DCs and PBMCs also did not reveal any conspicuous correlation with survival. CONCLUSIONS: Combining standard chemotherapy and DC vaccination appears superior to chemotherapy alone. The impact of HLA haplotypes on survival emphasizes the importance of a careful selection of patients with specific, well-defined HLA haplotypes for future vaccination trials using peptide-pulsed DCs, possibly combined with checkpoint inhibitors.


Assuntos
Células Dendríticas , Melanoma , Feminino , Humanos , Masculino , Peptídeos , Estudos Retrospectivos
8.
BMC Urol ; 19(1): 114, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718599

RESUMO

BACKGROUND: Hypospadias are among the most common genital malformations. Langerhans Cells (LCs) play a pivotal role in HIV and HPV infection. The migration of LC precursors to skin coincides with the embryonic period of hypospadias development and genetic alterations leading to the formation of hypospadias impact the development of ectodermally derived tissues. We hypothesized that this might be associated with a difference in frequency or morphology of epidermal and dermal LCs in hypospadias patients. METHODS: A total of 43 patients from two centers were prospectively included into this study after parental consent and ethics approval. Epidermal and dermal sheets were prepared from skin samples of 26 patients with hypospadias, 13 patients without penile malformations and 4 patients with penile malformations other than hypospadias. Immunofluorescence staining of sheets was performed with anti-HLA-DR-FITC and anti-CD207/Langerin-A594 antibodies. Skin sections from 11 patients without penile malformation and 11 patients with hypospadias were stained for Langerin. Frequencies as well as morphology and distribution of epidermal and dermal LCs on sheets and sections were microscopically evaluated. Cell counts were compared by unpaired t-tests. RESULTS: There was no difference in frequency of epidermal LCs, Neither on sheets (873 ± 61 vs. 940 ± 84LCs/mm2, p = 0.522) nor on sections (32 ± 3 vs. 30 ± 2LCs/mm2, p = 0.697). Likewise, the frequency of dermal LCs (5,9 ± 0,9 vs. 7.5 ± 1.3LCs/mm2, p = 0.329) was comparable between patients with hypospadias and without penile malformation. No differences became apparent in subgroup analyses, comparing distal to proximal hypospadias (p = 0.949), younger and older boys (p = 0.818) or considering topical dihydrotestosterone treatment prior to surgery (p = 0.08). The morphology of the LCs was not different comparing hypospadias patients with boys without penile malformations. CONCLUSIONS: LCs are present in similar frequencies and with a comparable morphology and distribution in patients with hypospadias as compared to children without penile malformations. This suggests that patients with hypospadias are not different from patients with normal penile development considering this particular compartment of their skin immunity.


Assuntos
Antígenos CD/análise , Antígenos HLA-DR/análise , Hipospadia/embriologia , Hipospadia/patologia , Células de Langerhans , Lectinas Tipo C/análise , Lectinas de Ligação a Manose/análise , Pele/química , Pele/patologia , Pré-Escolar , Epiderme/química , Epiderme/patologia , Humanos , Lactente , Masculino , Estudos Prospectivos
9.
Front Immunol ; 8: 1388, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109731

RESUMO

Dendritic cells (DCs) and macrophages (Mph) share many characteristics as components of the innate immune system. The criteria to classify the multitude of subsets within the mononuclear phagocyte system are currently phenotype, ontogeny, transcription patterns, epigenetic adaptations, and function. More recently, ontogenetic, transcriptional, and proteomic research approaches uncovered major developmental differences between Flt3L-dependent conventional DCs as compared with Mphs and monocyte-derived DCs (MoDCs), the latter mainly generated in vitro from murine bone marrow-derived DCs (BM-DCs) or human CD14+ peripheral blood monocytes. Conversely, in vitro GM-CSF-dependent monocyte-derived Mphs largely resemble MoDCs whereas tissue-resident Mphs show a common embryonic origin from yolk sac and fetal liver with Langerhans cells (LCs). The novel ontogenetic findings opened discussions on the terminology of DCs versus Mphs. Here, we bring forward arguments to facilitate definitions of BM-DCs, MoDCs, and LCs. We propose a group model of terminology for all DC subsets that attempts to encompass both ontogeny and function.

10.
Oncotarget ; 8(40): 67439-67456, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978044

RESUMO

Immunotherapy for metastatic melanoma offers great promise but, to date, only a subset of patients have responded. There is an urgent need to identify ways of allocating patients to the most beneficial therapy, to increase survival and decrease therapy-associated morbidity and costs. Blood-based biomarkers are of particular interest because of their straightforward implementation in routine clinical care. We sought to identify markers for dendritic cell (DC) vaccine-based immunotherapy against metastatic melanoma through gene expression analysis of peripheral blood mononuclear cells. A large-scale microarray analysis of 74 samples from two treatment centers, taken directly after the first round of DC vaccination, was performed. We found that phosphatidylethanolamine binding protein 1 (PEBP1)/Raf Kinase inhibitory protein (RKIP) expression can be used to identify a significant proportion of patients who performed poorly after DC vaccination. This result was validated by q-PCR analysis on blood samples from a second cohort of 95 patients treated with DC vaccination in four different centers. We conclude that low PEBP1 expression correlates with poor overall survival after DC vaccination. Intriguingly, this was only the case for expression of PEBP1 after, but not prior to, DC vaccination. Moreover, the change in PEBP1 expression upon vaccination correlated well with survival. Further analyses revealed that PEBP1 expression positively correlated with genes involved in T cell responses but inversely correlated with genes associated with myeloid cells and aberrant inflammation including STAT3, NOTCH1, and MAPK1. Concordantly, PEBP1 inversely correlated with the myeloid/lymphoid-ratio and was suppressed in patients suffering from chronic inflammatory disease.

11.
J Gerontol A Biol Sci Med Sci ; 72(5): 632-639, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27516623

RESUMO

In the current study, we have extended previous findings aiming at a better understanding of molecular mechanisms underlying UVB-induced senescence of diploid human dermal fibroblasts (HDFs), an experimental model to study the process of photoaging in the skin. We provide evidence that the inhibition of proteasomal degradation of damaged proteins and the activation of autophagosome formation are early events in UVB-induced senescence of HDFs, dependent on UVB-induced accumulation of reactive oxygen species. Our data suggest that autophagy is required for the establishment of the senescent phenotype in UVB-treated HDFs and that inhibition of autophagy is sufficient to change the cell fate from senescence to cell death by apoptosis. Studies in reconstructed skin equivalents revealed that UVB irradiation triggers hallmarks of autophagy induction in the dermal layer. These findings have potential implications for fundamental as well as translational research into skin aging, in particular photoaging.


Assuntos
Autofagia/efeitos da radiação , Senescência Celular/efeitos da radiação , Fibroblastos/efeitos da radiação , Complexo de Endopeptidases do Proteassoma/efeitos da radiação , Envelhecimento da Pele/efeitos da radiação , Western Blotting , Proliferação de Células/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta à Radiação , Humanos , Ensaio de Radioimunoprecipitação , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Raios Ultravioleta
12.
Am J Hum Genet ; 99(5): 1005-1014, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27745832

RESUMO

Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal-dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, joint hypermobility, and mild skin findings. A locus was mapped to an approximately 5.8 Mb region at 12p13.1 but no candidate gene was identified. In an international consortium we recruited 19 independent families comprising 107 individuals with pEDS to identify the locus, characterize the clinical details in those with defined genetic causes, and try to understand the physiological basis of the condition. In 17 of these families, we identified heterozygous missense or in-frame insertion/deletion mutations in C1R (15 families) or C1S (2 families), contiguous genes in the mapped locus that encode subunits C1r and C1s of the first component of the classical complement pathway. These two proteins form a heterotetramer that then combines with six C1q subunits. Pathogenic variants involve the subunit interfaces or inter-domain hinges of C1r and C1s and are associated with intracellular retention and mild endoplasmic reticulum enlargement. Clinical features of affected individuals in these families include rapidly progressing periodontitis with onset in the teens or childhood, a previously unrecognized lack of attached gingiva, pretibial hyperpigmentation, skin and vascular fragility, easy bruising, and variable musculoskeletal symptoms. Our findings open a connection between the inflammatory classical complement pathway and connective tissue homeostasis.


Assuntos
Complemento C1r/genética , Complemento C1s/genética , Síndrome de Ehlers-Danlos/genética , Deleção de Genes , Mutação de Sentido Incorreto , Periodontite/genética , Adolescente , Adulto , Criança , Pré-Escolar , Mapeamento Cromossômico , Cromossomos Humanos Par 12/genética , Síndrome de Ehlers-Danlos/diagnóstico , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Exoma , Feminino , Loci Gênicos , Humanos , Masculino , Linhagem , Periodontite/diagnóstico , Conformação Proteica , Adulto Jovem
16.
J Invest Dermatol ; 135(1): 119-129, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25078666

RESUMO

Langerhans cells (LCs), a sub-population of dendritic cells (DCs) in the skin, participate in the regulation of immunity and peripheral tolerance. The adaptor molecule p14 is part of the late endosomal/lysosomal adaptor and mitogen-activated protein kinase and mammalian target of rapamycin (mTOR) activator/regulator (LAMTOR) complex, which mediates the activation of lysosome-associated extracellular signaling-regulated kinase (ERK) and the mTOR cascade. In previous work, we demonstrated that CD11c-specific deficiency of p14 disrupts LC homeostasis by affecting the LAMTOR-mediated ERK and mTOR signaling. In this study, we extended our analysis on p14 deficiency specifically in LCs. Langerin-specific ablation of p14 caused a complete loss of LCs, accompanied by an increased maturational phenotype of LCs. The absence of LCs in p14-deficient mice reduced contact hypersensitivity (CHS) responses to the contact sensitizer trinitrochlorobenzene. Analysis using bone marrow-derived DCs (BMDCs) revealed that p14 deficiency in DCs/LCs interfered with the LC-relevant transforming growth factor ß1 (TGFß1) pathway, by lowering TGFß receptor II expression on BMDCs and LCs, as well as surface binding of TGFß1 on BMDCs. We conclude that p14 deficiency affects TGFß1 sensitivity of LCs, which is mandatory for their homeostasis and subsequently for their immunological function during CHS.


Assuntos
Dermatite de Contato/imunologia , Células de Langerhans/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Proteínas/imunologia , Pele/imunologia , Fator de Crescimento Transformador beta1/imunologia , Animais , Antígeno CD11c/genética , Antígeno CD11c/imunologia , Antígeno CD11c/metabolismo , Movimento Celular/imunologia , Dermatite de Contato/genética , Dermatite de Contato/metabolismo , Regulação para Baixo/imunologia , Endossomos/imunologia , Endossomos/metabolismo , Feminino , Homeostase/imunologia , Tolerância Imunológica/imunologia , Imunofenotipagem , Células de Langerhans/metabolismo , Masculino , Camundongos Mutantes , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/genética , Proteínas/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Pele/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
17.
Nat Commun ; 5: 5138, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25336251

RESUMO

The receptor tyrosine kinase Flt3 and its ligand are crucial for dendritic cell (DC) homeostasis by activating downstream effectors including mammalian target of Rapamycin (mTOR) signalling. LAMTOR2 is a member of the Ragulator/LAMTOR complex known to regulate mTOR and extracellular signal-regulated kinase activation on the late endosome as well as endosomal biogenesis. Here we show in mice that conditional ablation of LAMTOR2 in DCs results in a severe disturbance of the DC compartment caused by accumulation of Flt3 on the cell surface. This results in an increased downstream activation of the AKT/mTOR signalling pathway and subsequently to a massive expansion of conventional DCs and plasmacytoid DCs in ageing mice. Finally, we can revert the symptoms in vivo by inhibiting the activation of Flt3 and its downstream target mTOR.


Assuntos
Células Dendríticas/citologia , Regulação da Expressão Gênica , Proteínas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Membrana Celular/metabolismo , Proliferação de Células , Endossomos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Deleção de Genes , Genótipo , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/metabolismo
18.
Exp Dermatol ; 23(12): 909-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25346475

RESUMO

Skin dendritic cells (DC) express C-type lectin receptors for the recognition of pathogens. Langerhans cells (LC) express the receptor Langerin/CD207, whereas DEC-205/CD205 is mainly expressed by dermal DC, but can also be detected at low levels on LC. In this study, we tested an ex vivo approach for targeting DC in situ with monoclonal antibodies (mAb) against Langerin and DEC-205. The targeting mAb was injected intradermally into human skin biopsies or added to the medium during skin explant culture. Corresponding to the expression patterns of these lectin receptors on skin DC, Langerin mAb was detected merely in LC in the epidermis and DEC-205 mainly in dermal DC in human skin explants, regardless of the application route. Migratory skin DC bound and carried targeting mAb from skin explants according to their lectin receptor expression profiles. In contrast to the very selective transport of Langerin mAb by LC, DEC-205 mAb was more widely distributed on all CD1a(+) skin DC subsets but almost absent in CD14(+) dermal DC. As effective vaccination requires the addition of adjuvant, we co-administered the toll-like receptor (TLR)-3 ligand poly I:C with the mAb. This adjuvant enhanced binding of DEC-205 mAb to all skin DC subsets, whereas Langerin targeting efficacy remained unchanged. Our findings demonstrate that LC can be preferentially targeted by Langerin mAb. In contrast, DEC-205 mAb can be bound by all CD1a(+) skin DC subsets. The efficacy of DEC-205 mAb targeting strategy can be boosted by addition of poly I:C underlining the potential of this combination for immunotherapeutical interventions.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Células de Langerhans/imunologia , Receptores Mitogênicos/antagonistas & inibidores , Adjuvantes Imunológicos/administração & dosagem , Anticorpos Monoclonais/metabolismo , Complexo Antígeno-Anticorpo/metabolismo , Antígenos CD/imunologia , Células Cultivadas , Humanos , Imunização , Injeções Intradérmicas , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/antagonistas & inibidores , Lectinas de Ligação a Manose/imunologia , Antígenos de Histocompatibilidade Menor , Poli I-C/administração & dosagem , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/imunologia , Receptores Mitogênicos/imunologia , Receptor 3 Toll-Like/metabolismo
19.
EMBO Mol Med ; 6(9): 1191-204, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25085878

RESUMO

Skin dendritic cells (DCs) control the immunogenicity of cutaneously administered vaccines. Antigens targeted to DCs via the C-type lectin Langerin/CD207 are cross-presented to CD8(+) T cells in vivo. We investigated the relative roles of Langerhans cells (LCs) and Langerin(+) dermal DCs (dDCs) in different vaccination settings. Poly(I:C) and anti-CD40 agonist antibody promoted cytotoxic responses upon intradermal immunization with ovalbumin (OVA)-coupled anti-Langerin antibodies (Langerin/OVA). This correlated with CD70 upregulation in Langerin(+) dDCs, but not LCs. In chimeric mice where Langerin targeting was restricted to dDCs, CD8(+) T-cell memory was enhanced. Conversely, providing Langerin/OVA exclusively to LCs failed to prime cytotoxicity, despite initial antigen cross-presentation to CD8(+) T cells. Langerin/OVA combined with imiquimod could not prime CD8(+) T cells and resulted in poor cytotoxicity in subsequent responses. This tolerance induction required targeting and maturation of LCs. Altogether, Langerin(+) dDCs prime long-lasting cytotoxic responses, while cross-presentation by LCs negatively influences CD8(+) T-cell priming. Moreover, this highlights that DCs exposed to TLR agonists can still induce tolerance and supports the existence of qualitatively different DC maturation programs.


Assuntos
Antígenos de Superfície/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Células de Langerhans/imunologia , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/imunologia , Animais , Apresentação de Antígeno , Apresentação Cruzada , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Modelos Imunológicos
20.
Blood ; 123(2): 217-27, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24092934

RESUMO

Langerhans cells (LCs) are dendritic cells (DCs) residing in epithelia, where they critically regulate immunity and tolerance. The p14 adaptor molecule is part of the late endosomal/LAMTOR (lysosomal adaptor and mitogen-activated protein kinase and mammalian target of rapamycin [mTOR] activator/regulator) complex, thereby contributing to the signal transduction of the extracellular signaling-regulated kinase (ERK) and the mTOR cascade. Furthermore, p14 represents an important regulator for endosomal sorting processes within the cell. Mutated, dysfunctional p14 leads to a human immunodeficiency disorder with endosomal/lysosomal defects in immune cells. Because p14 participates in the regulation of endosomal trafficking, growth factor signaling, and cell proliferation, we investigated the role of p14 in mouse DCs/LCs using a conditional knockout mouse model. p14-deficient animals displayed a virtually complete loss of LCs in the epidermis early after birth due to impaired proliferation and increased apoptosis of LCs. Repopulation analysis after application of contact sensitizer leads to the recruitment of a transient LC population, predominantly consisting of short-term LCs. The underlying molecular mechanism involves the p14-mediated disruption of the LAMTOR complex which results in the malfunction of both ERK and mTOR signal pathways. Hence, we conclude that p14 acts as a novel and essential regulator of LC homeostasis in vivo.


Assuntos
Endossomos/metabolismo , Homeostase , Células de Langerhans/metabolismo , Proteínas/genética , Proteínas/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/genética , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Mitose/genética , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Pele/imunologia , Pele/metabolismo , Pele/patologia , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...