Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 3(4): 666-675, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32832869

RESUMO

Recent efforts in drug development against influenza A virus (IAV) M2 proton channel S31N mutant resulted in conjugates of amantadine linked with aryl head heterocycles. To understand the mechanism of drug resistance, we chose a representative M2-S31N inhibitor, compound 3, as a chemical probe to identify resistant mutants. To increase the possibility of identifying novel resistant mutants, serial viral passage experiments were performed with multiple strains of H1N1 and H3N2 viruses in different cell lines. This approach not only identified M2 mutations around the drug-binding site, including the pore-lining residues (V27A, V27F, N31S, and G34E) and an interhelical residue (I32N), but also a new allosteric mutation (R45H), in addition to L46P previously identified, located at the C-terminus of M2 that is more than 10 Å away from the drug-binding site. The effects of each mutation were next investigated using electrophysiology, recombinant viruses, and molecular dynamics (MD) simulations. The reduced sensitivity in channel blockage correlated with increased drug resistance in antiviral assays using recombinant viruses. The MD simulations show that the V27A, V27F, G34E, and R45H mutations increase the diameter and hydration state of the pore in complex with compound 3. The Molecular Mechanics Generalized Born (MM-GBSA) calculations result in more positive binding free energies for the complexes of resistant M2 (V27A, V27F, G34E, R45H) with compound 3 compared to the stable complexes (S31N and I32N). Overall, this is the first systematic study of the drug resistance mechanism of M2-S31N channel blockers using multiple viruses in different cell lines.

2.
Biol Lett ; 15(6): 20190211, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31238856

RESUMO

Many passerine birds are small and require a high mass-specific rate of resting energy expenditure, especially in the cold. The energetics of thermoregulation is, therefore, an important aspect of their ecology, yet few studies have quantified thermoregulatory patterns in wild passerines. We used miniature telemetry to record the skin temperature ( Tskin) of free-living superb fairy-wrens ( Malurus cyaneus, 8.6 g; n = 6 birds over N = 7-22 days) and determine the importance of controlled reductions in body temperature during resting to their winter energy budgets. Fairy-wrens routinely exhibited large daily fluctuations in Tskin between maxima of 41.9 ± 0.6°C and minima of 30.4 ± 0.7°C, with overall individual minima of 27.4 ± 1.1°C (maximum daily range: 14.7 ± 0.9°C). These results provide strong evidence of nocturnal torpor in this small passerine, which we calculated to provide a 42% reduction in resting metabolic rate at a Ta of 5°C compared to active-phase Tskin. A capacity for energy-saving torpor has important consequences for understanding the behaviour and life-history ecology of superb fairy-wrens. Moreover, our novel field data suggest that torpor could be more widespread and important than previously thought within passerines, the most diverse order of birds.


Assuntos
Aves Canoras , Torpor , Animais , Temperatura Corporal , Regulação da Temperatura Corporal , Metabolismo Energético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...