Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2316303121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551838

RESUMO

Photodynamic therapy (PDT) relies on a series of photophysical and photochemical reactions leading to cell death. While effective for various cancers, PDT has been less successful in treating pigmented melanoma due to high light absorption by melanin. Here, this limitation is addressed by 2-photon excitation of the photosensitizer (2p-PDT) using ~100 fs pulses of near-infrared laser light. A critical role of melanin in enabling rather than hindering 2p-PDT is elucidated using pigmented and non-pigmented murine melanoma clonal cell lines in vitro. The photocytotoxicities were compared between a clinical photosensitizer (Visudyne) and a porphyrin dimer (Oxdime) with ~600-fold higher σ2p value. Unexpectedly, while the 1p-PDT responses are similar in both cell lines, 2p activation is much more effective in killing pigmented than non-pigmented cells, suggesting a dominant role of melanin 2p-PDT. The potential for clinical translational is demonstrated in a conjunctival melanoma model in vivo, where complete eradication of small tumors was achieved. This work elucidates the melanin contribution in multi-photon PDT enabling significant advancement of light-based treatments that have previously been considered unsuitable in pigmented tumors.


Assuntos
Melanoma , Fotoquimioterapia , Neoplasias Cutâneas , Camundongos , Humanos , Animais , Fármacos Fotossensibilizantes/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Melaninas/metabolismo , Neoplasias Cutâneas/tratamento farmacológico
2.
J Biomed Opt ; 27(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35701871

RESUMO

SIGNIFICANCE: Accurate early diagnosis of malignant skin lesions is critical in providing adequate and timely treatment; unfortunately, initial clinical evaluation of similar-looking benign and malignant skin lesions can result in missed diagnosis of malignant lesions and unnecessary biopsy of benign ones. AIM: To develop and validate a label-free and objective image-guided strategy for the clinical evaluation of suspicious pigmented skin lesions based on multispectral autofluorescence lifetime imaging (maFLIM) dermoscopy. APPROACH: We tested the hypothesis that maFLIM-derived autofluorescence global features can be used in machine-learning (ML) models to discriminate malignant from benign pigmented skin lesions. Clinical widefield maFLIM dermoscopy imaging of 41 benign and 19 malignant pigmented skin lesions from 30 patients were acquired prior to tissue biopsy sampling. Three different pools of global image-level maFLIM features were extracted: multispectral intensity, time-domain biexponential, and frequency-domain phasor features. The classification potential of each feature pool to discriminate benign versus malignant pigmented skin lesions was evaluated by training quadratic discriminant analysis (QDA) classification models and applying a leave-one-patient-out cross-validation strategy. RESULTS: Classification performance estimates obtained after unbiased feature selection were as follows: 68% sensitivity and 80% specificity with the phasor feature pool, 84% sensitivity, and 71% specificity with the biexponential feature pool, and 84% sensitivity and 32% specificity with the intensity feature pool. Ensemble combinations of QDA models trained with phasor and biexponential features yielded sensitivity of 84% and specificity of 90%, outperforming all other models considered. CONCLUSIONS: Simple classification ML models based on time-resolved (biexponential and phasor) autofluorescence global features extracted from maFLIM dermoscopy images have the potential to provide objective discrimination of malignant from benign pigmented lesions. ML-assisted maFLIM dermoscopy could potentially assist with the clinical evaluation of suspicious lesions and the identification of those patients benefiting the most from biopsy examination.


Assuntos
Melanoma , Neoplasias Cutâneas , Dermoscopia/métodos , Humanos , Aprendizado de Máquina , Melanoma/patologia , Sensibilidade e Especificidade , Neoplasias Cutâneas/patologia
3.
J Photochem Photobiol B ; 213: 112071, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33242779

RESUMO

Photosensitization of all tissue in sufficient quantity to generate damage is one of the limiting factors for Photodynamic Therapy (PDT) efficiency. Methyl nicotinate (MN) is a thermogenic and vasodilating substance that facilitates the topical tissue penetration of some compounds. The topical MAL (methyl aminolevulinate) PDT is commonly used as a precursor of protoporphyrin IX (PpIX). This study investigates the safety of topical use in NM, as well as its ability to improve the efficiency of topical PDT. For this, we investigate the cytotoxicity of MN, as well as its actions in increasing cellular metabolism and vasodilation. Besides, its ability to optimize the formation of PpIX in the tissue when associated with MAL cream was investigated, besides assessing the severity of necrosis obtained by treatments. The cytotoxicity of MN was tested for concentrations of 0, 0.1, 0.25, 0.5, 0.75 and 1% in cell culture. For the concentration of 0.5%, the cellular metabolism was evaluated using confocal microscopy to calculate the redox rate. In the Chorioallantoic Membrane Model, vasodilation was evaluated for concentrations of 0.5 and 1% MN during 1 h of incubation. In the animal model, the healthy skin of Wistar rat was used to evaluate the production of PpIX in the tissue and the degree of necrosis obtained by Photodynamic therapy when using NM associated with methyl aminolevulinate. It was observed the non-cytotoxicity in vitro of MN in the concentration used (0.5%) and its ability to increase cellular metabolism. In a chorioallantoic model, the MN vasodilation power was demonstrated for different caliber of vessels. In vivo studies are showing that the incorporation of MN in the MAL cream increases the amount of PpIX produced in the tissue causing a higher effect on the epidermis after PDT. This improvement of the protocol may make the procedure more effective both in the destruction of tumor tissue and in the treatment of deeper cells decreasing possible recurrence, in addition to allowing improvements in the protocol, such as reducing the cream's incubation time.


Assuntos
Ácidos Nicotínicos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Dermatopatias/radioterapia , Administração Tópica , Ácido Aminolevulínico/análogos & derivados , Ácido Aminolevulínico/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular , Humanos , Masculino , NAD/metabolismo , Imagem Óptica , Fotoquimioterapia , Protoporfirinas/farmacologia , Ratos Wistar , Pele/efeitos dos fármacos
4.
Photochem Photobiol ; 96(6): 1208-1214, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32668506

RESUMO

Photodynamic procedures have been used in many applications, ranging from cancer treatment to microorganism inactivation. Photodynamic reactions start with the activation of a photosensitizing molecule with light, leading to the production of cytotoxic molecules that promote cell death. However, establishing the correct light and photosensitizer dosimetry for a broadband light source remains challenging. In this study, we proposed a theoretical mathematical model for the photodegradation of protoporphyrin IX (PpIX), when irradiated by multi-wavelength light sources. The theoretical model predicts the experimental photobleaching (temporal change in PpIX concentration) of PpIX for different light sources. We showed that photobleaching occurs independently of the light source wavelengths but instead depends only on the number of absorbed photons. The model presented here can be used as an important mathematical approach to better understand current photodynamic therapy protocols and help achieve optimization of the doses delivered.

5.
Photodiagnosis Photodyn Ther ; 30: 101704, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32135314

RESUMO

Basal cell carcinoma (BCC) is the most common type of skin cancer. Diagnosis and edge assessment of BCC lesions are based on clinical and dermoscopy evaluation, which are strongly dependent on the expertise and training of the physician. There is a high rate of underdiagnosis because BCC is frequently confused with certain common benign lesions and is often indistinguishable from the surrounding healthy tissue. In the present study, a multispectral fluorescence lifetime imaging (FLIm) dermoscopy system, designed for imaging and analyzing the autofluorescence emission of skin tissue, was used to image thirty-eight patients with diagnosed nodular BCC (nBCC) lesions, using clinically acceptable levels of excitation light exposure. With this system, skin autofluorescence was imaged simultaneously using three emission bands: 390 ±â€¯20 nm, 452 ±â€¯22 nm, and >496 nm, preferentially targeting collagen, NADH, and FAD autofluorescence, respectively. Statistical classifiers based on FLIm features developed to discriminate BCC from healthy tissue showed promising performance (ROC area-under-the-curve of 0.82). This study demonstrates the feasibility of clinically performing multispectral endogenous FLIm dermoscopy providing baseline results indicating the potential of this technology as an image-guided tool to improve the delineation of nBCC during surgical lesion resection.


Assuntos
Carcinoma Basocelular , Fotoquimioterapia , Neoplasias Cutâneas , Carcinoma Basocelular/diagnóstico por imagem , Humanos , Imagem Óptica , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Neoplasias Cutâneas/diagnóstico por imagem
6.
J Bone Miner Metab ; 37(1): 18-27, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29344812

RESUMO

There are few published data on the relationship between loss of bone mass due to osteoporosis and poor tooth quality. This study analyzed the effects of osteoporosis on incisor teeth and femoral bones using optical techniques in rats. Twenty female Wistar rats aged 6 months (n = 20) were randomized into two groups: control group, non-ovariectomized rats (n = 10); ovariectomy group, ovariectomized rats to induce osteoporosis (n = 10). Each group was subdivided randomly into two groups containing five rats each as follows. Control group 1: non-ovariectomized rats euthanized at the age of 9 or 3 months post-ovariectomy (n = 5); Control group 2: non-ovariectomized rats euthanized at the age of 1 year or 6 months post-ovariectomy (n = 5); ovariectomy group 1: ovariectomized rats euthanized at the age of 9 months or 3 months post-ovariectomy (n = 5); ovariectomy group 2: ovariectomized rats euthanized at the age of 1 year or 6 months post-ovariectomy (n = 5). The incisor teeth and femoral bones of Wistar rats were removed to perform Raman spectroscopy using an excitation laser at 785 nm. In addition, an energy-dispersive X-ray spectrometer system was used to evaluate calcium (Ca) and phosphorus (P). The main findings included significant changes (p < 0.05) for phosphate and carbonate band areas for both incisor teeth and femur bones. In addition, there was significant negative correlation between the P concentration and phosphate/carbonate ratio (lower P content-larger ratio, p < 0.05) for incisor teeth and femoral bones. The proline and CH2 wag band areas were significantly reduced only for the incisor teeth (p < 0.05). Therefore, Raman spectroscopy assessed the compositional, physicochemical and structural changes in hard tissue. The current study also pointed out the possible action mechanisms of these changes, bone fracture risk and dental fragility. It is important to emphasize that poor dental quality may also occur due to osteoporosis.


Assuntos
Fêmur/patologia , Incisivo/patologia , Osteoporose/patologia , Ovariectomia , Espectrometria por Raios X , Análise Espectral Raman , Animais , Densidade Óssea , Feminino , Ratos Wistar , Fatores de Tempo
7.
J Biophotonics ; 10(11): 1538-1546, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28464559

RESUMO

Photodynamic Inactivation (PDI) is based on the use of a photosensitizer (PS) and light that results mainly in the production of reactive oxygen species, aiming to produce microorganism cell death. PS incubation time and light dose are key protocol parameters that influence PDI response; the correct choice of them can increase the efficiency of inactivation. The results of this study show that a minor change in the PDI protocol, namely light-driven incubation leads to a higher photosensitizer and more uniform cell uptake inside the irradiated zone. Furthermore, as the uptake increases, the damage caused by PDI also increases. The proposed light-driven incubation prior to the inactivation illumination dose has advantages when compared to the traditional PDI treatments since it can be more selective and effective. Using a violet light as pre-illumination (light-driven incubation) source and a red-light system as PDI source, it was possible to demonstrate that when compared to the traditional protocol of dark incubation, the pre-illuminated cell culture showed an inactivation increase of 7 log units. These in vitro results performed in Candida albicans cells may result in the introduction of a new protocol for PDI.


Assuntos
Candida albicans/efeitos dos fármacos , Candida albicans/efeitos da radiação , Luz , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Transporte Biológico/efeitos da radiação , Candida albicans/metabolismo , Candida albicans/fisiologia , Relação Dose-Resposta à Radiação
8.
Appl Spectrosc ; 71(7): 1471-1480, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28447856

RESUMO

Huanglongbing (HLB) is the most recent and destructive bacterial disease of citrus and has no cure yet. A promising alternative to conventional methods is to use laser-induced breakdown spectroscopy (LIBS), a multi-elemental analytical technique, to identify the nutritional changes provoked by the disease to the citrus leaves and associate the mineral composition profile with its health status. The leaves were collected from adult citrus trees and identified by visual inspection as healthy, HLB-symptomatic, and HLB-asymptomatic. Laser-induced breakdown spectroscopy measurements were done in fresh leaves without sample preparation. Nutritional variations were evaluated using statistical tools, such as Student's t-test and analysis of variance applied to LIBS spectra, and the largest were found for Ca, Mg, and K. Considering the nutritional profile changes, a classifier induced by classification via regression combined with partial least squares regression was built resulting in an accuracy of 73% for distinguishing the three categories of leaves.


Assuntos
Citrus/fisiologia , Doenças das Plantas , Folhas de Planta/fisiologia , Análise Espectral/métodos , Agricultura , Cálcio/análise , Cálcio/metabolismo , Citrus/química , Citrus/metabolismo , Magnésio/análise , Magnésio/metabolismo , Ciências da Nutrição , Folhas de Planta/química , Folhas de Planta/metabolismo
9.
J Photochem Photobiol B ; 165: 291-297, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27838482

RESUMO

This study investigated the effects of demineralization on teeth and bones evaluated by fluorescence spectroscopy and micro energy-dispersive X-ray fluorescence spectrometry (µ-EDXRF) in rats. For in vitro study, 20 teeth of Wistar rats were removed and decalcified to evaluate fluorescence. For in vivo study, 10 female Wistar rats aged 6months were randomized into 2 groups: Control Group (C): non-ovariectomized rats; Ovariectomy Group (OV): ovariectomized rats to induce osteoporosis. The fluorescence spectroscopy of the teeth was performed for long-term (until 180days). For ex vivo study, the tooth and femur bone of the Wistar rats were removed at 180days to perform fluorescence spectroscopy using excitation laser at 408 and 532nm and µ-EDXRF for calcium (Ca) and phosphorus (P) analysis. There were no intergroup differences in fluorescence spectra with laser at 408nm (p≥0.05), but there were changes in the fluorescence spectra using laser at 532nm which led to both the wavelength shift and changes in the band area (p<0.05). The concentrations of P and Ca for the dentine and cortical bone, respectively, were significantly reduced in OV (p<0.05). Demineralization leading to loss of tissue quality may be assessed by fluorescence spectroscopy using 532nm laser. These findings corroborate those obtained by µ-EDXRF.


Assuntos
Desmineralização Patológica Óssea , Espectrometria de Fluorescência/métodos , Desmineralização do Dente , Animais , Técnicas In Vitro , Ratos
10.
Appl Opt ; 53(10): 2170-6, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24787177

RESUMO

The C cycle in the Brazilian forests is very important, mainly for issues addressed to climate changes and soil management. Assessing and understanding C dynamics in Amazonian soils can help scientists to improve models and anticipate scenarios. New methods that allow soil C measurements in situ are a crucial approach for this kind of region, due to the costs for collecting and sending soil samples from the rainforest to the laboratory. Laser-induced breakdown spectroscopy (LIBS) is a multielemental atomic emission spectroscopy technique that employs a highly energetic laser pulse for plasma production and requires neither sample preparation nor the use of reagents. As LIBS takes less than 10 s per sample measurement, it is considered a promising technique for in situ soil analyses. One of the limitations of portable LIBS systems, however, is the common overlap of the emission lines that cannot be spectrally resolved. In this study a method was developed capable of separating the Al interference from the C emission line in LIBS measurements. Two typical forest Brazilian soils rich in Al were investigated: a spodosol (Amazon Forest) and an oxisol (Atlantic Forest). Fifty-three samples were collected and analyzed using a low-resolution LIBS apparatus to measure the intensities of C lines. In particular, two C lines were evaluated, at 193.03 and 247.86 nm. The line at 247.86 nm showed very strong interference with Fe and Si lines, which made quantitative analysis difficult. The line at 193.03 nm showed interference with atomic and ionic Al emission lines, but this problem could be solved by applying a correction method that was proposed and tested in this work. The line at 247.86 was used to assess the proposed model. The strong correlation (Pearson's coefficient R=0.91) found between the LIBS values and those obtained by a reference technique (dry combustion by an elemental analyzer) supported the validity of the proposed method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...