Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epigenetics ; 19(1): 2294516, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38126131

RESUMO

Altered epigenetic mechanisms have been previously reported in growth restricted offspring whose mothers experienced environmental insults during pregnancy in both human and rodent studies. We previously reported changes in the expression of the DNA methyltransferase Dnmt3a and the imprinted genes Cdkn1c (Cyclin-dependent kinase inhibitor 1C) and Kcnq1 (Potassium voltage-gated channel subfamily Q member 1) in the kidney tissue of growth restricted rats whose mothers had uteroplacental insufficiency induced on day 18 of gestation, at both embryonic day 20 (E20) and postnatal day 1 (PN1). To determine the mechanisms responsible for changes in the expression of these imprinted genes, we investigated DNA methylation of KvDMR1, an imprinting control region (ICR) that includes the promoter of the antisense long non-coding RNA Kcnq1ot1 (Kcnq1 opposite strand/antisense transcript 1). Kcnq1ot1 expression decreased by 51% in growth restricted offspring compared to sham at PN1. Interestingly, there was a negative correlation between Kcnq1ot1 and Kcnq1 in the E20 growth restricted group (Spearman's ρ = 0.014). No correlation was observed between Kcnq1ot1 and Cdkn1c expression in either group at any time point. Additionally, there was a 11.25% decrease in the methylation level at one CpG site within KvDMR1 ICR. This study, together with others in the literature, supports that long non-coding RNAs may mediate changes seen in tissues of growth restricted offspring.


Assuntos
Metilação de DNA , RNA Longo não Codificante , Gravidez , Feminino , Humanos , Animais , Ratos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Impressão Genômica , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Rim/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo
2.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299087

RESUMO

Biomarkers for placental dysfunction are currently lacking. We recently identified SPINT1 as a novel biomarker; SPINT2 is a functionally related placental protease inhibitor. This study aimed to characterise SPINT2 expression in placental insufficiency. Circulating SPINT2 was assessed in three prospective cohorts, collected at the following: (1) term delivery (n = 227), (2) 36 weeks (n = 364), and (3) 24-34 weeks' (n = 294) gestation. SPINT2 was also measured in the plasma and placentas of women with established placental disease at preterm (<34 weeks) delivery. Using first-trimester human trophoblast stem cells, SPINT2 expression was assessed in hypoxia/normoxia (1% vs. 8% O2), and following inflammatory cytokine treatment (TNFα, IL-6). Placental SPINT2 mRNA was measured in a rat model of late-gestational foetal growth restriction. At 36 weeks, circulating SPINT2 was elevated in patients who later developed preeclampsia (p = 0.028; median = 2233 pg/mL vs. controls, median = 1644 pg/mL), or delivered a small-for-gestational-age infant (p = 0.002; median = 2109 pg/mL vs. controls, median = 1614 pg/mL). SPINT2 was elevated in the placentas of patients who required delivery for preterm preeclampsia (p = 0.025). Though inflammatory cytokines had no effect, hypoxia increased SPINT2 in cytotrophoblast stem cells, and its expression was elevated in the placental labyrinth of growth-restricted rats. These findings suggest elevated SPINT2 is associated with placental insufficiency.


Assuntos
Biomarcadores/metabolismo , Retardo do Crescimento Fetal/diagnóstico , Glicoproteínas de Membrana/metabolismo , Doenças Placentárias/diagnóstico , Placenta/patologia , Pré-Eclâmpsia/diagnóstico , Trofoblastos/patologia , Adolescente , Feminino , Retardo do Crescimento Fetal/metabolismo , Humanos , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , Estudos Longitudinais , Placenta/metabolismo , Doenças Placentárias/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez , Estudos Prospectivos , Trofoblastos/metabolismo
3.
J Dev Orig Health Dis ; 12(6): 952-962, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33349286

RESUMO

Intrauterine growth restriction (IUGR) due to uteroplacental insufficiency results in a placenta that is unable to provide adequate nutrients and oxygen to the fetus. These growth-restricted babies have an increased risk of hypertension and chronic kidney disease later in life. In rats, both male and female growth-restricted offspring have nephron deficits but only males develop kidney dysfunction and high blood pressure. In addition, there is transgenerational transmission of nephron deficits and hypertension risk. Therefore, epigenetic mechanisms may explain the sex-specific programming and multigenerational transmission of IUGR-related phenotypes. Expression of DNA methyltransferases (Dnmt1and Dnmt3a) and imprinted genes (Peg3, Snrpn, Kcnq1, and Cdkn1c) were investigated in kidney tissues of sham and IUGR rats in F1 (embryonic day 20 (E20) and postnatal day 1 (PN1)) and F2 (6 and 12 months of age, paternal and maternal lines) generations (n = 6-13/group). In comparison to sham offspring, F1 IUGR rats had a 19% decrease in Dnmt3a expression at E20 (P < 0.05), with decreased Cdkn1c (19%, P < 0.05) and increased Kcnq1 (1.6-fold, P < 0.01) at PN1. There was a sex-specific difference in Cdkn1c and Snrpn expression at E20, with 29% and 34% higher expression in IUGR males compared to females, respectively (P < 0.05). Peg3 sex-specific expression was lost in the F2 IUGR offspring, only in the maternal line. These findings suggest that epigenetic mechanisms may be altered in renal embryonic and/or fetal development in growth-restricted offspring, which could alter kidney function, predisposing these offspring to kidney disease later in life.


Assuntos
Retardo do Crescimento Fetal/fisiopatologia , Rim/crescimento & desenvolvimento , Animais , Coristoma/genética , Coristoma/patologia , Coristoma/fisiopatologia , Modelos Animais de Doenças , Epigênese Genética/fisiologia , Feminino , Rim/patologia , Rim/fisiopatologia , Gravidez , Ratos , Ratos Wistar
4.
Placenta ; 104: 57-70, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33276236

RESUMO

INTRODUCTION: Fetal growth restriction complicates 10% of pregnancies and increases offspring (F1) risk of metabolic disorders, including obesity and gestational diabetes mellitus (GDM). This disease predisposition can be passed onto the next generation (F2). Importantly, the risk of pregnancy complications in obese women can be exacerbated by a stressful pregnancy. Exercise can reduce adiposity and improve health outcomes in obese women and those with GDM. This study investigated the impacts of maternal growth restriction, obesity, exercise, and stress on fetal and placental endocrine function. METHODS: Uteroplacental insufficiency (Restricted) or sham (Control) surgery was induced on embryonic day (E) 18 in F0 Wistar-Kyoto rats. F1 offspring were fed a Chow or High-fat (HFD) diet from weaning and, at 16 weeks, were randomly allocated an exercise protocol; Sedentary, Exercised prior to and during pregnancy (Exercise), or Exercised only during pregnancy (PregEx). Females were mated and further randomly allocated to either undergo (Stress), or not undergo (Unstressed), physiological measurements during pregnancy. On E20, F2 fetal plasma (steroid hormones), tissues (brain, liver), and placentae (morphology, stress genes) were collected. RESULTS: Maternal growth restriction and high-fat feeding had minimal impact on fetoplacental endocrine function. PregEx and Exercise increased cross-sectional labyrinth and junctional zone areas. PregEx, but not Exercise, increased fetal deoxycorticosterone concentrations and reduced placental Hsd11b2 and Nr3c2 gene abundance. Maternal stress increased fetal corticosterone concentrations in Sedentary HFD dams and increased placental cross-sectional areas in PregEx mothers. DISCUSSION: PregEx and Stress independently dysregulates the endocrine status of the developing fetus, which may program future disease.


Assuntos
Dieta Hiperlipídica , Desenvolvimento Fetal/fisiologia , Retardo do Crescimento Fetal/metabolismo , Condicionamento Físico Animal/fisiologia , Placenta/metabolismo , Insuficiência Placentária/metabolismo , Animais , Corticosterona/metabolismo , Feminino , Gravidez , Ratos , Ratos Endogâmicos WKY
5.
J Physiol Biochem ; 76(1): 111-121, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31927696

RESUMO

Intrauterine growth restriction (IUGR) affects vascular reactivity in older rats, but at present the causative factors for this change are unknown. Therefore, we investigated downstream events associated with vascular reactivity, specifically, Ca2+-regulated force production and shifts in contractile protein content. The mesenteric artery from male and female 1-year-old Wistar-Kyoto rats was examined using two distinct experimental growth restriction models. Uterine ligation surgery restriction or a sham surgery was conducted at day 18 of pregnancy, whilst a food restriction diet (40% control diet) began on gestational day 15. Extracellular vascular reactivity was studied using intact mesenteric arteries, which were subsequently chemically permeabilized using 50 µM ß-escin to examine Ca2+-activated force. Peak contractile responses to a K+-induced depolarization and phenylephrine were significantly elevated due to an increase in maximum Ca2+-activated force in the male surgery restricted group. No changes in contractile forces were reported between female experimental groups. Sections of mesenteric artery were examined using western blotting, revealing IUGR increased the relative abundance of the voltage-gated Ca2+ channel, inositol-1,4,5-trisphosphate receptor and myosin light chain kinase, in both male growth restricted groups, whereas no changes were seen in females. These findings demonstrate for the first time in 1-year-old rats that changes in vascular reactivity due to IUGR are caused by a change in Ca2+-activated force and shifts in important contractile protein content. These changes affect the Wistar-Kyoto rat in a sex-specific and maternal insult-dependent manner.


Assuntos
Endotélio Vascular/metabolismo , Retardo do Crescimento Fetal/metabolismo , Artérias Mesentéricas/metabolismo , Músculo Liso Vascular/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteínas Contráteis/metabolismo , Endotélio Vascular/patologia , Feminino , Retardo do Crescimento Fetal/patologia , Masculino , Artérias Mesentéricas/patologia , Contração Muscular , Músculo Liso Vascular/patologia , Gravidez , Ratos , Ratos Endogâmicos WKY
6.
Nutrients ; 11(6)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151257

RESUMO

Growth restriction programs adult bone deficits and increases the risk of obesity, which may be exacerbated during pregnancy. We aimed to determine if high-fat feeding could exacerbate the bone deficits in pregnant growth restricted dams, and whether treadmill exercise would attenuate these deficits. Uteroplacental insufficiency was induced on embryonic day 18 (E18) in Wistar Kyoto (WKY) rats using bilateral uterine vessel ligation (restricted) or sham (control) surgery. The F1 females consumed a standard or high-fat (HFD) diet from 5 weeks, commenced treadmill exercise at 16 weeks, and they were mated at 20 weeks. Femora and plasma from the pregnant dams were collected at post-mortem (E20) for peripheral quantitative computed tomography (pQCT), mechanical testing, histomorphometry, and plasma analysis. Sedentary restricted females had bone deficits compared to the controls, irrespective of diet, where such deficits were prevented with exercise. Osteocalcin increased in the sedentary restricted females compared to the control females. In the sedentary HFD females, osteocalcin was reduced and CTX-1 was increased, with increased peak force and bending stress compared to the chow females. Exercise that was initiated before and continued during pregnancy prevented bone deficits in the dams born growth restricted, whereas a HFD consumption had minimal bone effects. These findings further highlight the beneficial effects of exercise for individuals at risk of bone deficits.


Assuntos
Densidade Óssea/fisiologia , Dieta Hiperlipídica , Retardo do Crescimento Fetal , Condicionamento Físico Animal , Prenhez , Animais , Peso Corporal , Feminino , Insuficiência Placentária , Gravidez , Distribuição Aleatória , Ratos
7.
J Physiol ; 597(7): 1905-1918, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30734290

RESUMO

KEY POINTS: Fetal growth is dependent on effective placental nutrient transportation, which is regulated by mammalian target of rapamycin (mTOR) complex 1 modulation of nutrient transporter expression. These transporters are dysregulated in pregnancies affected by uteroplacental insufficiency and maternal obesity. Nutrient transporters and mTOR were altered in placentae of mothers born growth restricted compared to normal birth weight dams, with maternal diet- and fetal sex-specific responses. Exercise initiated during pregnancy downregulated mTOR protein expression, despite an increase in mTOR activation in male associated placentae, and reduced nutrient transporter gene abundance, which was also dependent on maternal diet and fetal sex. Limited changes were characterized with exercise initiated before and continued throughout pregnancy in nutrient transporter and mTOR expression. Maternal exercise during pregnancy differentially regulated mTOR and nutrient transporters in a diet- and sex-specific manner, which likely aimed to improve late gestational placental growth and neonatal survival. ABSTRACT: Adequate transplacental nutrient delivery is essential for fetoplacental development. Intrauterine growth restriction and maternal obesity independently alter placental nutrient transporter expression. Although exercise is beneficial for maternal health, limited studies have characterized how the timing of exercise initiation influences placental nutrient transport. Therefore, this study investigated the impact of maternal exercise on placental mechanistic target of rapamycin (mTOR) and nutrient transporter expression in growth restricted mothers and whether these outcomes were dependent on maternal diet or fetal sex. Uteroplacental insufficiency or sham surgery was induced on embryonic day (E) 18 in Wistar-Kyoto rats. F1 offspring were fed a chow or high-fat diet from weaning and at 16 weeks were randomly allocated to an exercise protocol: sedentary, exercised prior to and during pregnancy, or exercised during pregnancy only. Females were mated with normal males (20 weeks) and F2 placentae collected at E20. Exercise during pregnancy only, reduced mTOR protein expression in all groups and increased mTOR activation in male associated placentae. Exercise during pregnancy only, decreased the expression of amino acid transporters in a diet- and sex-specific manner. Maternal growth restriction altered mTOR and system A amino acid transporter expression in a sex- and diet-specific manner. These data highlight that maternal exercise initiated during pregnancy alters placental mTOR expression, which may directly regulate amino acid transporter expression, to a greater extent than exercise initiated prior to and continued during pregnancy, in a diet- and fetal sex-dependent manner. These findings highlight that the timing of exercise initiation is important for optimal placental function.


Assuntos
Proteínas de Transporte/metabolismo , Retardo do Crescimento Fetal , Atividade Motora/fisiologia , Placenta/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Sistema A de Transporte de Aminoácidos/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Masculino , Gravidez , Ratos , Ratos Wistar , Fatores Sexuais
8.
Nutrients ; 11(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626125

RESUMO

The in utero and early postnatal environments play essential roles in offspring growth and development. Standardizing or reducing pup litter size can independently compromise long-term health likely due to altered milk quality, thus limiting translational potential. This study investigated the effect reducing litter size has on milk quality and offspring outcomes. On gestation day 18, dams underwent sham or bilateral uterine vessel ligation surgery to generate dams with normal (Control) and altered (Restricted) milk quality/composition. At birth, pups were cross-fostered onto separate dams with either an unadjusted or reduced litter size. Plasma parathyroid hormone-related protein was increased in Reduced litter pups, whereas ionic calcium and total body calcium were decreased. These data suggest Reduced litter pups have dysregulated calcium homeostasis in early postnatal life, which may impair bone mineralization decreasing adult bone bending strength. Dams suckling Reduced litter pups had increased milk long-chain monounsaturated fatty acid and omega-3 docosahexaenoic acid. Reduced litter pups suckled by Normal milk quality/composition dams had increased milk omega-6 linoleic and arachidonic acids. Reduced litter male adult offspring had elevated blood pressure. This study highlights care must be taken when interpreting data from research that alters litter size as it may mask subtle cardiometabolic health effects.


Assuntos
Animais Recém-Nascidos/metabolismo , Osso e Ossos/metabolismo , Cálcio/metabolismo , Ácidos Graxos/metabolismo , Lactação/metabolismo , Tamanho da Ninhada de Vivíparos , Projetos de Pesquisa , Animais , Pressão Sanguínea , Densidade Óssea , Sistema Cardiovascular , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Homeostase , Masculino , Leite/química , Proteína Relacionada ao Hormônio Paratireóideo/sangue , Gravidez , Prenhez , Ratos Endogâmicos WKY , Projetos de Pesquisa/normas
9.
J Am Soc Nephrol ; 30(1): 63-78, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30518531

RESUMO

BACKGROUND: Nephron number is a major determinant of long-term renal function and cardiovascular risk. Observational studies suggest that maternal nutritional and metabolic factors during gestation contribute to the high variability of nephron endowment. However, the underlying molecular mechanisms have been unclear. METHODS: We used mouse models, including DNA methyltransferase (Dnmt1, Dnmt3a, and Dnmt3b) knockout mice, optical projection tomography, three-dimensional reconstructions of the nephrogenic niche, and transcriptome and DNA methylation analysis to characterize the role of DNA methylation for kidney development. RESULTS: We demonstrate that DNA hypomethylation is a key feature of nutritional kidney growth restriction in vitro and in vivo, and that DNA methyltransferases Dnmt1 and Dnmt3a are highly enriched in the nephrogenic zone of the developing kidneys. Deletion of Dnmt1 in nephron progenitor cells (in contrast to deletion of Dnmt3a or Dnm3b) mimics nutritional models of kidney growth restriction and results in a substantial reduction of nephron number as well as renal hypoplasia at birth. In Dnmt1-deficient mice, optical projection tomography and three-dimensional reconstructions uncovered a significant reduction of stem cell niches and progenitor cells. RNA sequencing analysis revealed that global DNA hypomethylation interferes in the progenitor cell regulatory network, leading to downregulation of genes crucial for initiation of nephrogenesis, Wt1 and its target Wnt4. Derepression of germline genes, protocadherins, Rhox genes, and endogenous retroviral elements resulted in the upregulation of IFN targets and inhibitors of cell cycle progression. CONCLUSIONS: These findings establish DNA methylation as a key regulatory event of prenatal renal programming, which possibly represents a fundamental link between maternal nutritional factors during gestation and reduced nephron number.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/genética , Rim/embriologia , Organogênese/genética , Células-Tronco/citologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Néfrons/citologia , Néfrons/fisiologia , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Células-Tronco/fisiologia , DNA Metiltransferase 3B
10.
Physiol Rep ; 6(24): e13954, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30592188

RESUMO

Intrauterine growth restriction (IUGR) is known to alter vascular smooth muscle reactivity, but it is currently unknown whether these changes are driven by downstream events that lead to force development, specifically, Ca2+ -regulated activation of the contractile apparatus or a shift in contractile protein content. This study investigated the effects of IUGR on Ca2+ -activated force production, contractile protein expression, and a potential phenotypic switch in the resistance mesenteric artery of both male and female Wistar-Kyoto (WKY) rats following two different growth restriction models. Pregnant female WKY rats were randomly assigned to either a control (C; N = 9) or food restriction diet (FR; 40% of control; N = 11) at gestational day-15 or underwent a bilateral uterine vessel ligation surgery restriction (SR; N = 10) or a sham surgery control model (SC; N = 12) on day-18 of gestation. At 6-months of age, vascular responsiveness of intact mesenteric arteries was studied, before chemically permeabilization using 50 µmol/L ß-escin to investigate Ca2+ -activated force. Peak responsiveness to a K+ -induced depolarization was decreased (P ≤ 0.05) due to a reduction in maximum Ca2+ -activated force (P ≤ 0.05) in both male growth restricted experimental groups. Vascular responsiveness was unchanged between female experimental groups. Segments of mesenteric artery were analyzed using Western blotting revealed IUGR reduced the relative abundance of important receptor and contractile proteins in male growth restricted rats (P ≤ 0.05), suggesting a potential phenotypic switch, whilst no changes were observed in females. Results from this study suggest that IUGR alters the mesenteric artery reactivity due to a decrease in maximum Ca2+ -activated force, and likely contributed to by a reduction in contractile protein and receptor/channel content in 6-month-old male rats, while female WKY rats appear to be protected.


Assuntos
Cálcio/metabolismo , Proteínas Contráteis/metabolismo , Retardo do Crescimento Fetal/metabolismo , Artérias Mesentéricas/metabolismo , Animais , Proteínas Contráteis/genética , Feminino , Retardo do Crescimento Fetal/fisiopatologia , Masculino , Artérias Mesentéricas/fisiopatologia , Contração Muscular , Ratos , Ratos Wistar , Fatores Sexuais
11.
J Physiol ; 596(23): 5947-5964, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29953638

RESUMO

KEY POINTS: The placental insulin-like growth factor (IGF) system is critical for normal fetoplacental growth, which is dysregulated following several pregnancy perturbations including uteroplacental insufficiency and maternal obesity. We report that the IGF system was altered in placentae of mothers born growth restricted compared to normal birth weight mothers, with maternal diet- and fetal sex-specific responses. Additionally, we report increased body weight and plasma IGF1 concentrations in fetuses from chow-fed normal birth weight mothers that exercised prior to and continued during pregnancy compared to sedentary mothers. Exercise initiated during pregnancy, on the other hand, resulted in placental morphological alterations and increased IGF1 and IGF1R protein expression, which may in part be modulated by reduced Let 7f-1 miRNA abundance. Growth restriction of mothers before birth and exercise differentially regulate the placental IGF system with diet- and sex-specific responses, probably as a means to improve fetoplacental growth and development, and hence neonatal survival. This increased neonatal survival may prevent adult disease onset. ABSTRACT: The insulin-like growth factor (IGF) system regulates fetoplacental growth and plays a role in disease programming. Dysregulation of the IGF system is implicated in several pregnancy perturbations associated with altered fetal growth, including intrauterine growth restriction and maternal obesity. Limited human studies have demonstrated that maternal exercise enhances fetoplacental growth and decreases cord IGF ligands, which may restore the placental IGF system in complicated pregnancies. This study investigated the impact maternal exercise has on the placental IGF system in placentae from mothers born growth restricted and if these outcomes are dependent on maternal diet or fetal sex. Uteroplacental insufficiency (Restricted) or sham (Control) surgery was induced on embryonic day (E) 18 in Wistar-Kyoto rats. F1 offspring were fed a chow or high-fat diet from weaning, and at 16 weeks were randomly allocated an exercise protocol: Sedentary, Exercised prior to and during pregnancy (Exercise), or Exercised during pregnancy only (PregEx). Females were mated (20 weeks) with placentae associated with F2 fetuses collected at E20. The placental IGF system mRNA abundance and placental morphology was altered in mothers born growth restricted. Exercise increased fetal weight and Control plasma IGF1 concentrations, and decreased female placental weight. PregEx did not influence fetoplacental growth but increased placental IGF1 and IGF1R (potentially modulated by reduced Let 7f-1 miRNA) and decreased placental IGF2 protein. Importantly, these placental IGF system changes occurred with sex-specific responses. These data highlight that exercise differently influences fetoplacental growth and the placental IGF system depending on maternal exercise initiation, which may prevent the transgenerational transmission of deficits and dysfunction.


Assuntos
Dieta Hiperlipídica , Retardo do Crescimento Fetal/metabolismo , Feto/fisiologia , Condicionamento Físico Animal/fisiologia , Placenta/metabolismo , Somatomedinas/fisiologia , Animais , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/fisiopatologia , Masculino , Mães , Gravidez , Ratos Endogâmicos WKY , Receptores de Somatomedina/fisiologia , Fatores Sexuais , Regulação para Cima
12.
Placenta ; 74: 47-54, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30638632

RESUMO

Fetal growth and development are dependent on adequate placental nutrient transfer. The surface area of the placental villous network is a key determinant of nutrient exchange, which is regulated by vasculogenic and angiogenic factors. These factors are altered by intrauterine growth restriction (IUGR) and maternal obesity in both the first (F1) and second (F2) generations. We investigated the impact of endurance exercise in IUGR dams fed a High-fat diet on placental vasculogenesis and angiogenesis. Uteroplacental insufficiency (Restricted) or sham (Control) surgery was induced on embryonic day (E) 18 in Wistar-Kyoto rats. F1 offspring were fed a Chow or High-fat diet from weaning, and at 16 weeks were further allocated an exercise protocol; Sedentary, Exercised prior to and during pregnancy (Exercise), or Exercised during pregnancy only (PregEx). Females were mated (20 weeks) and F2 placentae collected at E20. Maternal Restriction, High-fat feeding and Exercise had a minimal impact on placental regulators of vasculogenesis and angiogenesis. However, Restriction increased placental labyrinth tissue area in Chow-fed dams. PregEx induced overt adaptations, including increased VEGFA and decreased PLGF protein expression, and reduced blood space area. These alterations were sex-dependent and associated with alterations in miRNA27a, a known regulator of VEGF translation. These data highlight that maternal exercise initiated during pregnancy (PregEx) causes alterations in placental vasculogenesis and angiogenesis in a sex-dependent manner, with minimal Restriction and maternal diet effects. However, further investigation is required to determine if these adaptations are beneficial or harmful for maternal and fetoplacental outcomes.


Assuntos
Retardo do Crescimento Fetal/fisiopatologia , Condicionamento Físico Animal/fisiologia , Placenta/metabolismo , Placentação , Efeitos Tardios da Exposição Pré-Natal , Animais , Dieta Hiperlipídica , Feminino , Retardo do Crescimento Fetal/patologia , Masculino , Neovascularização Fisiológica , Placenta/irrigação sanguínea , Placenta/patologia , Fator de Crescimento Placentário/metabolismo , Gravidez , Ratos Endogâmicos WKY , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R161-R170, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978512

RESUMO

Females born growth restricted have poor adult bone health. Stress exposure during pregnancy increases risk of pregnancy complications. We determined whether maternal stress exposure in growth-restricted females exacerbates long-term maternal and offspring bone phenotypes. On gestational day 18, bilateral uterine vessel ligation (restricted) or sham (control) surgery was performed on Wistar-Kyoto rats. At 4 mo, control and restricted females were mated and allocated to unstressed or stressed pregnancies. Stressed pregnancies had physiological measurements performed; unstressed females were not handled. After birth, mothers were aged to 13 mo. Second-generation (F2) offspring generated four experimental groups: control unstressed, restricted unstressed, control stressed and restricted stressed. F2 offspring were studied at postnatal day 35 (PN35), 6, 12, and 16 mo. Peripheral quantitative computed tomography was performed on maternal and F2 offspring femurs. Restricted females, irrespective of stress during pregnancy, had decreased endosteal circumference, bending strength, and increased osteocalcin concentrations after pregnancy at 13 mo. F2 offspring of stressed mothers were born lighter. F2 male offspring from stressed pregnancies had decreased trabecular content at 6 mo and decreased endosteal circumference at 16 mo. F2 female offspring from growth-restricted mothers had reduced cortical thickness at PN35 and reduced endosteal circumference at 6 mo. At 12 mo, females from unstressed restricted and stressed control mothers had decreased trabecular content. Low birth weight females had long-term bone changes, highlighting programming effects on bone health. Stress during pregnancy did not exacerbate these programmed effects. Male and female offspring responded differently to maternal growth restriction and stress, indicating gender-specific programming effects.


Assuntos
Desenvolvimento Ósseo , Fêmur/fisiopatologia , Retardo do Crescimento Fetal/fisiopatologia , Mães/psicologia , Efeitos Tardios da Exposição Pré-Natal , Estresse Psicológico/complicações , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Fêmur/diagnóstico por imagem , Fêmur/metabolismo , Idade Gestacional , Masculino , Osteocalcina/metabolismo , Gravidez , Ratos Endogâmicos WKY , Fatores de Risco , Fatores Sexuais , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Fatores de Tempo
14.
J Physiol ; 595(11): 3389-3407, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369926

RESUMO

KEY POINTS: Uteroplacental insufficiency compromises maternal mammary development, milk production and pup organ development; this is ameliorated by cross-fostering, which improves pup growth and organ development and prevents adult diseases in growth-restricted (Restricted) offspring by enhancing postnatal nutrition. Leptin is transported to the fetus from the mother by the placenta; we report reduced plasma leptin concentrations in Restricted fetuses associated with sex-specific alterations in placental leptin transporter expression. Pup plasma leptin concentrations were also reduced during suckling, which may suggest reduced milk leptin transport or leptin reabsorption. Mothers suckled by Restricted pups had impaired mammary development and changes in milk fatty acid composition with no alterations in milk leptin; cross-fostering restored pup plasma leptin concentrations, which may be correlated to improved milk composition and intake. Increased plasma leptin and altered milk fatty acid composition in Restricted pups suckling mothers with normal lactation may improve postnatal growth and prevent adult diseases. ABSTRACT: Uteroplacental insufficiency reduces birth weight and adversely affects fetal organ development, increasing adult disease risk. Cross-fostering improves postnatal nutrition and restores these deficits. Mothers with growth-restricted pups have compromised milk production and composition; however, the impact cross-fostering has on milk production and composition is unknown. Plasma leptin concentrations peak during the completion of organogenesis, which occurs postnatally in rats. Leptin is transferred to the fetus via the placenta and to the pup via the lactating mammary gland. This study investigated the effect of uteroplacental insufficiency on pup plasma leptin concentrations and placental leptin transporters. We additionally examined whether cross-fostering improves mammary development, milk composition and pup plasma leptin concentrations. Fetal growth restriction was induced by bilateral uterine vessel ligation surgery on gestation day 18 in Wistar Kyoto rats (termed uteroplacental insufficiency surgery mothers). Growth-restricted (Restricted) fetuses had reduced plasma leptin concentrations, persisting throughout lactation, and sex-specific alterations in placental leptin transporters. Mothers suckled by Restricted pups had impaired mammary development, altered milk fatty acid composition and increased plasma leptin concentrations, despite no changes in milk leptin. Milk intake was reduced in Restricted pups suckling uteroplacental insufficiency surgery mothers compared to Restricted pups suckling sham-operated mothers. Cross-fostering Restricted pups onto a sham-operated mother improved postnatal growth and restored plasma leptin concentrations compared to Restricted pups suckling uteroplacental insufficiency surgery mothers. Uteroplacental insufficiency alters leptin homeostasis. This is ameliorated with cross-fostering and enhanced milk fatty acid composition and consumption, which may protect the pups from developing adverse health conditions in adulthood.


Assuntos
Retardo do Crescimento Fetal/sangue , Leptina/sangue , Leite , Apoio Nutricional/métodos , Insuficiência Placentária/sangue , Animais , Feminino , Retardo do Crescimento Fetal/dietoterapia , Retardo do Crescimento Fetal/metabolismo , Leptina/metabolismo , Glândulas Mamárias Animais/fisiopatologia , Insuficiência Placentária/dietoterapia , Insuficiência Placentária/metabolismo , Gravidez , Ratos , Ratos Wistar
15.
Reprod Fertil Dev ; 29(2): 307-318, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26259538

RESUMO

Being born small programs adult diseases later in life, with the early postnatal growth rate in growth-restricted offspring playing a role in the reduction of the risk of disease in adulthood. In addition, early postnatal growth is critical for puberty onset (PO). Using cross-fostering, we determined the effects of growth restriction and prenatal and postnatal environments on PO and sex steroids. Bilateral uterine vessel ligation (Restricted) or sham surgery (Control), performed on Gestational Day 18 in Wistar-Kyoto rats induced fetal growth restriction. Control, Reduced (Control litter size reduced to five pups) and Restricted pups were cross-fostered onto different Control (normal lactation) or Restricted (impaired lactation) mothers on Day 1. The day of vaginal opening (females) and balanopreputial separation (males) characterised PO. Blood was sampled for sex steroid and leptin analysis. Restricted pups were born lighter than Controls (P<0.05). PO was delayed by 3.4-4 days in Restricted-on-Restricted males and females (P<0.05). Plasma leptin concentrations at PO were lower in both sexes in all groups compared with Restricted-on-Control and Control-on-Control (P<0.05). PO occurred earlier in Restricted-on-Control (~2 days) with normal leptin concentrations and accelerated growth compared with Restricted-on-Restricted (P<0.05). Testosterone concentrations were lower in male Restricted-on-Restricted than Control-on-Control at 6 months (P<0.05). Restricted-on-Restricted females had lower progesterone at PO compared with Control-on-Control (P<0.05). Female Restricted-on-Restricted had lower oestradiol, with Restricted-on-Control having higher testosterone concentrations at 6 months than Control-on-Control (P<0.05). Growth restriction reduced postnatal growth and leptin concentrations, delaying PO in both sexes and programming altered sex steroids. This highlights the importance of the interaction between prenatal and postnatal growth in the programming of adult reproductive status.


Assuntos
Lactação/fisiologia , Insuficiência Placentária/fisiopatologia , Maturidade Sexual/fisiologia , Fatores Etários , Animais , Estradiol/sangue , Feminino , Leptina/sangue , Masculino , Parto , Gravidez , Ratos , Ratos Endogâmicos WKY , Testosterona/sangue
16.
J Neurotrauma ; 33(23): 2154-2160, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-25686841

RESUMO

Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p < 0.01) and cortical thickness (10% decrease at 1 week, 11% decrease at 12 weeks p < 0.001). There was also a 23% reduction in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p < 0.001). There were no differences in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.


Assuntos
Densidade Óssea/fisiologia , Reabsorção Óssea/etiologia , Reabsorção Óssea/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Animais , Reabsorção Óssea/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Locomoção/fisiologia , Masculino , Distribuição Aleatória , Ratos , Ratos Long-Evans
17.
Bone ; 74: 199-207, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25659207

RESUMO

Low birth weight, due to uteroplacental insufficiency, results in programmed bone deficits in the first generation (F1). These deficits may be passed onto subsequent generations. We characterized the effects of being born small on maternal bone health during pregnancy; and aimed to characterize the contribution of the maternal environment and germ line effects to bone health in F2 offspring from mothers born small. Bilateral uterine vessel ligation (or sham) surgery was performed on female F0 WKY rats on gestational day 18 (term 22days) to induce uteroplacental insufficiency and fetal growth restriction. Control and Restricted F1 female offspring were allocated to a non-pregnant or pregnant group. To generate F2 offspring, F1 females were allocated to either non-embryo or embryo transfer groups. Embryo transfer was performed on gestational day 1, where second generation (F2) embryos were gestated (donor-in-recipient) in either a Control (Control-in-Control, Restricted-in-Control) or Restricted (Control-in-Restricted, Restricted-in-Restricted) mother. Restricted F1 females were born 10-15% lighter than Controls. Restricted non-pregnant females had shorter femurs, reduced trabecular and cortical bone mineral contents, trabecular density and bone geometry measures determined by peripheral quantitative computed tomography (pQCT) compared to non-pregnant Controls. Pregnancy restored the bone deficits that were present in F1 Restricted females. F2 non-embryo transfer male and female offspring were born of normal weight, while F2 embryo transfer males and females gestated in a Control mother (Control-in-Control, Restricted-in-Control) were heavier at birth compared to offspring gestated in a Restricted mother (Restricted-in-Restricted, Control-in-Restricted). Male F2 Restricted embryo groups (Restricted-in-Control and Restricted-in-Restricted) had accelerated postnatal growth. There was no transmission of bone deficits present at 35days or 6months in F2 offspring. Embryo transfer procedure had confounding effects preventing the separation of maternal environment and germ line contribution to outcomes. Deficits present in F1 non-pregnant Restricted females were absent during late gestation, indicating that pregnant F1 Restricted females experienced gains in bone. These beneficial maternal pregnancy adaptations may have prevented transmission of bone deficits to F2 offspring.


Assuntos
Envelhecimento/patologia , Osso e Ossos/fisiopatologia , Retardo do Crescimento Fetal/fisiopatologia , Animais , Peso Corporal , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Cruzamentos Genéticos , Transferência Embrionária , Feminino , Fêmur/patologia , Fêmur/fisiopatologia , Retardo do Crescimento Fetal/diagnóstico por imagem , Masculino , Gravidez , Ratos Endogâmicos WKY , Tomografia Computadorizada por Raios X
18.
Reprod Fertil Dev ; 27(5): 823-33, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24613152

RESUMO

Recent evidence links low birthweight and poor adult bone health. We characterised bone size, mineral content, density and strength (stress strain index of bone bending strength (SSI)) in rats from weaning to 12 months. Bilateral uterine vessel ligation (Restricted) or sham surgery (Control) was performed on gestational Day 18 in rats inducing uteroplacental insufficiency. Postmortem of male and female offspring was performed at postnatal Day 35 and at 2, 4, 6 and 12 months. Femur mineral content, density and strength were measured using quantitative computed tomography (pQCT). Restricted pups were born 10%-15% lighter and remained smaller with shorter femurs than Controls (P<0.05). Male and female Restricted rats had lower trabecular bone content compared with Controls (P<0.05), without trabecular density changes. Cortical content was reduced in Restricted males (Day 35 and 6 and 12 months) and at all ages in Restricted females (P<0.05). Cortical density was lower at Day 35 in Restricted males (P<0.05). SSI was lower at Day 35 and at 6 and 12 months in Restricted males, and at all ages in Restricted females (P<0.05). Skeletal deficits were detected in Restricted offspring with gender-specific differences during juvenile and adolescent periods. Bone deficits observed at 6 months in males were greater than at 12 months, indicating that aging can exacerbate programmed bone phenotypes.


Assuntos
Densidade Óssea/fisiologia , Desenvolvimento Ósseo/fisiologia , Retardo do Crescimento Fetal/fisiopatologia , Insuficiência Placentária/fisiopatologia , Envelhecimento/fisiologia , Animais , Feminino , Masculino , Gravidez , Ratos
19.
Am J Physiol Endocrinol Metab ; 308(5): E335-50, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25516549

RESUMO

Emerging research has highlighted the importance of leptin in fetal growth and development independent of its essential role in the maintenance of hunger and satiety through the modulation of neuropeptide Y and proopiomelanocortin neurons. Alterations in maternal-placental-fetal leptin exchange may modify the development of the fetus and contribute to the increased risk of developing disease in adulthood. In addition, leptin also plays an important role in reproductive functions, with plasma leptin concentrations rising in pregnant women, peaking during the third trimester. Elevated plasma leptin concentrations occur at the completion of organogenesis, and research in animal models has demonstrated that leptin is involved in the development and maturation of a number of organs, including the heart, brain, kidneys, and pancreas. Elevated maternal plasma leptin is associated with maternal obesity, and reduced fetal plasma leptin is correlated with intrauterine growth restriction. Alterations in plasma leptin during development may be associated with an increased risk of developing a number of adulthood diseases, including cardiovascular, metabolic, and renal diseases via altered fetal development and organogenesis. Importantly, research has shown that leptin antagonism after birth significantly reduces maturation of numerous organs. Conversely, restoration of the leptin deficiency after birth in growth-restricted animals restores the offspring's body weight and improves organogenesis. Therefore, leptin appears to play a major role in organogenesis, which may adversely affect the risk of developing a number of diseases in adulthood. Therefore, greater understanding of the role of leptin during development may assist in the prevention and treatment of a number of disease states that occur in adulthood.


Assuntos
Doença/etiologia , Desenvolvimento Fetal , Leptina/sangue , Gravidez/sangue , Efeitos Tardios da Exposição Pré-Natal/sangue , Adulto , Animais , Feminino , Humanos , Troca Materno-Fetal/fisiologia , Fatores de Risco
20.
Reprod Fertil Dev ; 26(3): 385-94, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23477709

RESUMO

Fluctuations in maternal bone mass during pregnancy and lactation facilitate calcium transfer to offspring. Uteroplacental insufficiency causes fetal growth restriction and programs poor adult bone health. We aimed to characterise maternal skeletal phenotype during normal pregnancy and pregnancy complicated by uteroplacental insufficiency. Uteroplacental restriction (Restricted) or sham surgery (Control) was performed on gestational Day 18 (term=22 days) in pregnant Wistar-Kyoto rats. Maternal right femurs were collected on embryonic Day 20, postnatal Day 1 and Weeks 5, 7 and 9 postnatal. Dual-energy X-ray absorptiometry was used to quantify global bone mineral content, density and body composition. Peripheral quantitative computed tomography was utilised to determine trabecular and cortical content, density, circumferences and strength. Control rats exhibited expected reductions in trabecular and cortical content, density and bone strength from embryonic Day 20 to postnatal Day 1 (P<0.05). These skeletal alterations were absent in Restricted rats. By postnatal Day 7, bone parameters in Control and Restricted rats were not different from non-pregnant rats, indicating restoration of maternal bone. The lack of bone loss in mothers suffering uteroplacental insufficiency suggests that calcium transfer to pups would be impaired. This reduction in calcium availability is a likely contributor to the programming of poor adult bone health in growth-restricted offspring.


Assuntos
Densidade Óssea/fisiologia , Cálcio/metabolismo , Lactação/fisiologia , Troca Materno-Fetal/fisiologia , Insuficiência Placentária/fisiopatologia , Gravidez/fisiologia , Absorciometria de Fóton , Análise de Variância , Animais , Composição Corporal/fisiologia , Feminino , Ratos , Ratos Endogâmicos WKY , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...