Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nanotechnology ; 35(30)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38631329

RESUMO

Modified fluorescent nanoparticles continue to emerge as promising candidates for drug delivery, bioimaging, and labeling tools for various biomedical applications. The ability of nanomaterials to fluorescently label cells allow for the enhanced detection and understanding of diseases. Silica nanoparticles have a variety of unique properties that can be harnessed for many different applications, causing their increased popularity. In combination with an organic dye, fluorescent nanoparticles demonstrate a vast range of advantageous properties including long photostability, surface modification, and signal amplification, thus allowing ease of manipulation to best suit bioimaging purposes. In this study, the Stöber method with tetraethyl orthosilicate (TEOS) and a fluorescent dye sulfo-Cy5-amine was used to synthesize fluorescent silica nanoparticles. The fluorescence spectra, zeta potential, quantum yield, cytotoxicity, and photostability were evaluated. The increased intracellular uptake and photostability of the dye-silica nanoparticles show their potential for bioimaging.


Assuntos
Corantes Fluorescentes , Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Corantes Fluorescentes/química , Nanopartículas/química , Humanos , Carbocianinas/química , Sobrevivência Celular/efeitos dos fármacos , Imagem Óptica/métodos
3.
J Clin Invest ; 134(8)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421730

RESUMO

Staphylococcus aureus is a leading cause of biofilm-associated prosthetic joint infection (PJI). A primary contributor to infection chronicity is an expansion of granulocytic myeloid-derived suppressor cells (G-MDSCs), which are critical for orchestrating the antiinflammatory biofilm milieu. Single-cell sequencing and bioinformatic metabolic algorithms were used to explore the link between G-MDSC metabolism and S. aureus PJI outcome. Glycolysis and the hypoxia response through HIF1a were significantly enriched in G-MDSCs. Interfering with both pathways in vivo, using a 2-deoxyglucose nanopreparation and granulocyte-targeted Hif1a conditional KO mice, respectively, attenuated G-MDSC-mediated immunosuppression and reduced bacterial burden in a mouse model of S. aureus PJI. In addition, single-cell RNA-Seq (scRNA-Seq) analysis of granulocytes from PJI patients also showed an enrichment in glycolysis and hypoxia-response genes. These findings support the importance of a glycolysis/HIF1a axis in promoting G-MDSC antiinflammatory activity and biofilm persistence during PJI.


Assuntos
Células Supressoras Mieloides , Humanos , Camundongos , Animais , Células Supressoras Mieloides/fisiologia , Staphylococcus aureus , Biofilmes , Granulócitos , Hipóxia
4.
Can Commun Dis Rep ; 49(1): 29-34, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38090144

RESUMO

The coronavirus disease 2019 pandemic served as a compelling modern-day reminder of the value of early warning against communicable disease threats in public health. As countries exit the acute phase of the pandemic, there remains a continued need to be vigilant for potential communicable disease threats, particularly as the risk of animal-to-human spillover events is increasing due to climate and land use change. Early warning of emerging threats facilitates earlier public health response, which affords more time to implement public health measures that can help minimize the impact of a particular health threat and protect the health and well-being of the population. One approach to providing early warning for communicable disease and other threats is through event-based surveillance (EBS). However, EBS is not often discussed in the context of public health surveillance. This overview introduces EBS and how it might contribute to providing early warning for communicable disease threats.

5.
Viruses ; 15(8)2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-37632003

RESUMO

Recombination is one of the mechanisms of SARS-CoV-2 evolution along with the occurrence of point mutations, insertions, and deletions. Recently, recombinant variants of SARS-CoV-2 have been registered in different countries, and some of them have become circulating forms. In this work, we performed screening of SARS-CoV-2 genomic sequences to identify recombination events and co-infections with various strains of the SARS-CoV-2 virus detected in Russia from February 2020 to March 2022. The study included 9336 genomes of the COVID-19 pathogen obtained as a result of high-throughput sequencing on the Illumina platform. For data analysis, we used an algorithm developed by our group that can identify viral recombination variants and cases of co-infections by estimating the frequencies of characteristic substitutions in raw read alignment files and VCF files. The detected cases of recombination were confirmed by alternative sequencing methods, principal component analysis, and phylogenetic analysis. The suggested approach allowed for the identification of recombinant variants of strains BA.1 and BA.2, among which a new recombinant variant was identified, as well as a previously discovered one. The results obtained are the first evidence of the spread of recombinant variants of SARS-CoV-2 in Russia. In addition to cases of recombination we identified cases of coinfection: eight of them contained the genome of the Omicron line as one of the variants, six of them the genome of the Delta line, and two with the genome of the Alpha line.


Assuntos
COVID-19 , Coinfecção , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Coinfecção/epidemiologia , Filogenia , Federação Russa/epidemiologia , Recombinação Genética
6.
Environ Sci Technol ; 57(26): 9782-9792, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37343248

RESUMO

This study investigated the release of microplastics and nanoplastics from plastic containers and reusable food pouches under different usage scenarios, using DI water and 3% acetic acid as food simulants for aqueous foods and acidic foods. The results indicated that microwave heating caused the highest release of microplastics and nanoplastics into food compared to other usage scenarios, such as refrigeration or room-temperature storage. It was found that some containers could release as many as 4.22 million microplastic and 2.11 billion nanoplastic particles from only one square centimeter of plastic area within 3 min of microwave heating. Refrigeration and room-temperature storage for over six months can also release millions to billions of microplastics and nanoplastics. Additionally, the polyethylene-based food pouch released more particles than polypropylene-based plastic containers. Exposure modeling results suggested that the highest estimated daily intake was 20.3 ng/kg·day for infants drinking microwaved water and 22.1 ng/kg·day for toddlers consuming microwaved dairy products from polypropylene containers. Furthermore, an in vitro study conducted to assess the cell viability showed that the extracted microplastics and nanoplastics released from the plastic container can cause the death of 76.70 and 77.18% of human embryonic kidney cells (HEK293T) at 1000 µg/mL concentration after exposure of 48 and 72 h, respectively.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Microplásticos , Polipropilenos , Células HEK293 , Poluentes Químicos da Água/análise , Água
7.
Adv Mater ; 35(6): e2208069, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36385439

RESUMO

Biofilm infection has a high prevalence in chronic wounds and can delay wound healing. Current treatment using debridement and antibiotic administration imposes a significant burden on patients and healthcare systems. To address their limitations, a highly efficacious electrical antibiofilm treatment system is described in this paper. This system uses high-intensity current (75 mA cm-2 ) to completely debride biofilm above the wound surface and enhance antibiotic delivery into biofilm-infected wounds simultaneously. Combining these two effects, this system uses short treatments (≤2 h) to reduce bacterial count of methicillin-resistant S. aureus (MRSA) biofilm-infected ex vivo skin wounds from 1010 to 105.2 colony-forming units (CFU) g-1 . Taking advantage of the hydrogel ionic circuit design, this system enhances the in vivo safety of high-intensity current application compared to conventional devices. The in vivo antibiofilm efficacy of the system is tested using a diabetic mouse-based wound infection model. MRSA biofilm bacterial count decreases from 109.0 to 104.6 CFU g-1 at 1 day post-treatment and to 103.3 CFU g-1 at 7 days post-treatment, both of which are below the clinical threshold for infection. Overall, this novel technology provides a quick, safe, yet highly efficacious treatment to chronic wound biofilm infections.


Assuntos
Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Infecção dos Ferimentos , Camundongos , Animais , Infecções Bacterianas/tratamento farmacológico , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Infecções Estafilocócicas/tratamento farmacológico
8.
Pathogens ; 11(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36558796

RESUMO

Analysis of genomic variability of pathogens associated with heightened public health concerns is an opportunity to track transmission routes of the disease and helps to develop more effective vaccines and specific diagnostic tests. We present the findings of a detailed genomic analysis of the genomic variability of the SARS-CoV-2 Omicron variant that spread in Russia between 8 December 2021 and 30 January 2022. We performed phylogenetic analysis of Omicron viral isolates collected in Moscow (n = 589) and downloaded from GISAID (n = 397), and identified that the BA.1 lineage was predominant in Russia during this period. The BA.2 lineage was also identified early in December 2021. We identified three cases of BA.1/BA.2 coinfections and one case of Delta/Omicron coinfection. A comparative genomic analysis of SARS-CoV-2 viral variants that spread in other countries allowed us to identify possible cases of transmission. We also found that some mutations that are quite rare in the Global Omicron dataset have a higher incidence rate, and identified genetic markers that could be associated with ways of Omicron transmission in Russia. We give the genomic variability of single nucleotide variations across the genome and give a characteristic of haplotype variability of Omicron strains in both Russia and around the world, and we also identify them.

9.
Cells ; 11(19)2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230912

RESUMO

The coronavirus disease 2019 (COVID-19) is accompanied by a cytokine storm with the release of many proinflammatory factors and development of respiratory syndrome. Several SARS-CoV-2 lineages have been identified, and the Delta variant (B.1.617), linked with high mortality risk, has become dominant in many countries. Understanding the immune responses associated with COVID-19 lineages may therefore aid the development of therapeutic and diagnostic strategies. Multiple single-cell gene expression studies revealed innate and adaptive immunological factors and pathways correlated with COVID-19 severity. Additional investigations covering host-pathogen response characteristics for infection caused by different lineages are required. Here, we performed single-cell transcriptome profiling of blood mononuclear cells from the individuals with different severity of the COVID-19 and virus lineages to uncover variant specific molecular factors associated with immunity. We identified significant changes in lymphoid and myeloid cells. Our study highlights that an abundant population of monocytes with specific gene expression signatures accompanies Delta lineage of SARS-CoV-2 and contributes to COVID-19 pathogenesis inferring immune components for targeted therapy.


Assuntos
COVID-19 , COVID-19/genética , Expressão Gênica , Humanos , Fatores Imunológicos , SARS-CoV-2
10.
Mol Neurobiol ; 59(12): 7404-7412, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36190693

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and a leading cause of dementia. Although the amyloid-ß (Aß) peptide is deemed a crucial driver of AD, there are no effective therapeutics available to treat Aß-caused neurotoxicity. Extracellular vesicles (EVs) are membrane-bound small particles mediating intercellular traffic of nucleic acids, lipids, proteins, and metabolites. Exosomes are a subtype of EVs with a size range of 30-150 nm in diameter. Stem cell-derived EVs are a potential therapeutic for AD, while EVs isolated from normal stem cell cultures generally have a low yield. Here, we studied the EVs secreted by the rat neural stem cells in the presence of heat shock (HS) stimulus. Nanoparticle tracking analysis confirmed that HS-derived EVs exhibit significantly higher concentration and larger diameter in comparison to the non-heat shock (NHS)-derived EVs. Mass spectrometric studies of EV proteins revealed that HS-derived EVs contained fewer diverse proteins than NHS-derived exosomes. GO enrichment analysis of the proteins suggested that the top two biological functions of the proteins in HS-derived EVs are involved in the negative regulation of apoptotic process and positive modulation of DNA repair. Importantly, the therapeutic efficacy of the NHS- and HS-derived EVs were tested in a cell culture model of AD: HS-derived EVs exhibited greater neuroprotection against not only oxidative stress but also amyloid-ß (Aß) induced neurotoxicity compared to NHS-derived EVs. Moreover, HS-derived EVs were also able to dramatically attenuate Aß-induced apoptosis and oxidative stress. These data indicate that in response to HS, neural stem cells increase EV production and alter EV morphology and cargo to confer better neuroprotection against oxidative stress and Aß-caused neurotoxicity, suggesting that HS-induced EVs from neural stem cells can be a therapeutic agent for AD and possibly other neurological disorders.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Células-Tronco Neurais , Doenças Neurodegenerativas , Síndromes Neurotóxicas , Animais , Ratos , Neuroproteção , Doenças Neurodegenerativas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Vesículas Extracelulares/metabolismo , Doença de Alzheimer/metabolismo , Estresse Oxidativo , Células-Tronco Neurais/metabolismo , Síndromes Neurotóxicas/metabolismo
11.
Adv Sci (Weinh) ; 9(8): e2103676, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994102

RESUMO

Local pulmonary administration of therapeutic siRNA represents a promising approach to the treatment of lung fibrosis, which is currently hampered by inefficient delivery. Development of perfluorooctylbromide (PFOB) nanoemulsions as a way of improving the efficiency of pulmonary polycation-based delivery of siRNA is reported. The results show that the polycation/siRNA/PFOB nanoemulsions are capable of efficiently silencing the expression of STAT3 and inhibiting chemokine receptor CXCR4-two validated targets in pulmonary fibrosis. Both in vitro and in vivo results demonstrate that the nanoemulsions improve mucus penetration and facilitate effective cellular delivery of siRNA. Pulmonary treatment of mice with bleomycin-induced pulmonary fibrosis shows strong inhibition of the progression of the disease and significant prolongation of animal survival. Overall, the study points to a promising local treatment strategy of pulmonary fibrosis.


Assuntos
Fluorocarbonos , Fibrose Pulmonar , Animais , Bleomicina/efeitos adversos , Bleomicina/metabolismo , Fluorocarbonos/efeitos adversos , Fluorocarbonos/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/terapia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia
12.
Adv Mater ; 34(5): e2107315, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34716729

RESUMO

Iontophoresis is an electrical-current-based, noninvasive drug-delivery technology, which is particularly suitable for intraocular drug delivery. Current ocular iontophoresis devices use low current intensities that significantly limit macromolecule and nanoparticle (NP) delivery efficiency. Increasing current intensity leads to ocular tissue damage. Here, an iontophoresis device based on a hydrogel ionic circuit (HIC), for high-efficiency intraocular macromolecule and NP delivery, is described. The HIC-based device is capable of minimizing Joule heating, effectively buffering electrochemical (EC) reaction-generated pH changes, and absorbing electrode overpotential-induced heating. As a result, the device allows safe application of high current intensities (up to 87 mA cm-2 , more than 10 times higher than current ocular iontophoresis devices) to the eye with minimal ocular cell death and tissue damage. The high-intensity iontophoresis significantly enhances macromolecule and NP delivery to both the anterior and posterior segments by up to 300 times compared to the conventional iontophoresis. Therapeutically effective concentrations of bevacizumab and dexamethasone are delivered to target tissue compartments within 10-20 min of iontophoresis application. This study highlights the significant safety enhancement enabled by an HIC-based device design and the potential of the device to deliver therapeutic doses of macromolecule and NP ophthalmic drugs within a clinically relevant time frame.


Assuntos
Iontoforese , Nanopartículas , Sistemas de Liberação de Medicamentos , Olho/metabolismo , Hidrogéis/farmacologia
13.
Biology (Basel) ; 10(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466299

RESUMO

BACKGROUND: Alcohol abuse is common in people living with HIV-1 and dramaticallyenhances the severity of HIV-induced liver damage by inducing oxidative stress and lysosomaldysfunction in the liver cells. We hypothesize that the increased release of extracellular vesicles(EVs) in hepatocytes and liver humanized mouse model is linked to lysosome dysfunction. METHODS: The study was performed on primary human hepatocytes and human hepatoma RLWXP-GFP (Huh7.5 cells stably transfected with CYP2E1 and XPack-GFP) cells and validated on ethanol-fed liverhumanizedfumarylacetoacetate hydrolase (Fah)-/-, Rag2-/-, common cytokine receptor gamma chainknockout (FRG-KO) mice. Cells and mice were infected with HIV-1ADA virus. RESULTS: We observedan increase in the secretion of EVs associated with a decrease in lysosomal activity and expressionof lysosomal-associated membrane protein 1. Next-generation RNA sequencing of primary humanhepatocytes revealed 63 differentially expressed genes, with 13 downregulated and 50 upregulatedgenes in the alcohol-HIV-treated group. Upstream regulator analysis of differentially expressedgenes through Ingenuity Pathway Analysis identified transcriptional regulators affecting downstreamgenes associated with increased oxidative stress, lysosomal associated disease, and function andEVs biogenesis. Our in vitro findings were corroborated by in vivo studies on human hepatocytetransplantedhumanized mice, indicating that intensive EVs' generation by human hepatocytes andtheir secretion to serum was associated with increased oxidative stress and reduction in lysosomalactivities triggered by HIV infection and ethanol diet. CONCLUSION: HIV-and-ethanol-metabolisminducedEVs release is tightly controlled by lysosome status in hepatocytes and participates in thedevelopment of double-insult-induced liver injury.

14.
J Neuroinflammation ; 18(1): 29, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472658

RESUMO

BACKGROUND: Protein aggregates can be found in peripheral organs, such as the heart, kidney, and pancreas, but little is known about the impact of peripherally misfolded proteins on neuroinflammation and brain functional recovery following ischemic stroke. METHODS: Here, we studied the ischemia/reperfusion (I/R) induced brain injury in mice with cardiomyocyte-restricted overexpression of a missense (R120G) mutant small heat shock protein, αB-crystallin (CryABR120G), by examining neuroinflammation and brain functional recovery following I/R in comparison to their non-transgenic (Ntg) littermates. To understand how peripherally misfolded proteins influence brain functionality, exosomes were isolated from CryABR120G and Ntg mouse blood and were used to treat wild-type (WT) mice and primary cortical neuron-glia mix cultures. Additionally, isolated protein aggregates from the brain following I/R were isolated and subjected to mass-spectrometric analysis to assess whether the aggregates contained the mutant protein, CryABR120G. To determine whether the CryABR120G misfolding can self-propagate, a misfolded protein seeding assay was performed in cell cultures. RESULTS: Our results showed that CryABR120G mice exhibited dramatically increased infarct volume, delayed brain functional recovery, and enhanced neuroinflammation and protein aggregation in the brain following I/R when compared to the Ntg mice. Intriguingly, mass-spectrometric analysis of the protein aggregates isolated from CryABR120G mouse brains confirmed presence of the mutant CryABR120G protein in the brain. Importantly, intravenous administration of WT mice with the exosomes isolated from CryABR120G mouse blood exacerbated I/R-induced cerebral injury in WT mice. Moreover, incubation of the CryABR120G mouse exosomes with primary neuronal cultures induced pronounced protein aggregation. Transduction of CryABR120G aggregate seeds into cell cultures caused normal CryAB proteins to undergo dramatic aggregation and form large aggregates, suggesting self-propagation of CryABR120G misfolding in cells. CONCLUSIONS: These results suggest that peripherally misfolded proteins in the heart remotely enhance neuroinflammation and exacerbate brain injury following I/R likely through exosomes, which may represent an underappreciated mechanism underlying heart-brain crosstalk.


Assuntos
Encéfalo/patologia , AVC Isquêmico/patologia , Dobramento de Proteína , Cadeia B de alfa-Cristalina/metabolismo , Animais , Inflamação/metabolismo , Inflamação/patologia , AVC Isquêmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/patologia , Cadeia B de alfa-Cristalina/genética
15.
J Control Release ; 329: 585-597, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33010334

RESUMO

Successful treatment of pancreatic cancer remains a challenge due to desmoplasia, development of chemoresistance, and systemic toxicity. Herein, we synthesized (6-(3-hydroxy-4-methoxylphenyl)pyridin-2-yl) (3,4,5-trimethoxyphenyl)methanone (CH-3-8), a novel microtubule polymerization inhibitor with little susceptible to transporter-mediated chemoresistance. CH-3-8 binding to the colchicine-binding site in tubulin protein was confirmed by tubulin polymerization assay and molecular modeling. CH-3-8 disrupted microtubule dynamics at the nanomolar concentration in MIA PaCa-2 and PANC-1 pancreatic cancer cell lines. CH-3-8 significantly inhibited the proliferation of these cells, induced G2/M cell cycle arrest, and led to apoptosis. CH-3-8 is hydrophobic with an aqueous solubility of 0.97 ± 0.16 µg/mL at pH 7.4. We further conjugated it with dodecanol through diglycolate linker to increase hydrophobicity and thus loading in lipid-based delivery systems. Hence, we encapsulated CH-3-8 lipid conjugate (LDC) into methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol) (mPEG-b-PCC-g-DC) polymeric nanoparticles (NPs) by solvent evaporation, resulting in a mean particle size of 125.6 ± 2.3 nm and drug loading of 10 ± 1.0% (w/w) while the same polymer could only load 1.6 ± 0.4 (w/w) CH-3-8 using the same method. Systemic administration of 6 doses of CH-3-8 and LDC loaded NPs at the dose of 20 mg/kg into orthotopic pancreatic tumor-bearing NSG mice every alternate day resulted in significant tumor regression. Systemic toxicity was negligible, as evidenced by histological evaluations. In conclusion, CH-3-8 LDC loaded NPs have the potential to improve outcomes of pancreatic cancer by overcoming transporter-mediated chemoresistance and reducing systemic toxicity.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Animais , Linhagem Celular Tumoral , Camundongos , Micelas , Neoplasias Pancreáticas/tratamento farmacológico , Polietilenoglicóis , Polímeros , Moduladores de Tubulina/uso terapêutico
16.
Redox Biol ; 36: 101610, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32863236

RESUMO

Scavenging superoxide (O2•-) via overexpression of superoxide dismutase (SOD) or administration of SOD mimics improves outcomes in multiple experimental models of human disease including cardiovascular disease, neurodegeneration, and cancer. While few SOD mimics have transitioned to clinical trials, MnTnBuOE-2-PyP5+ (BuOE), a manganese porphyrin SOD mimic, is currently in clinical trials as a radioprotector for cancer patients; thus, providing hope for the use of SOD mimics in the clinical setting. However, BuOE transiently alters cardiovascular function including a significant and precipitous decrease in blood pressure. To limit BuOE's acute hypotensive action, we developed a mesoporous silica nanoparticle and lipid bilayer nanoformulation of BuOE (nanoBuOE) that allows for slow and sustained release of the drug. Herein, we tested the hypothesis that unlike native BuOE, nanoBuOE does not induce an acute hypotensive response, as the nanoformulation prevents BuOE from scavenging O2•- while the drug is still encapsulated in the formulation. We report that intact nanoBuOE does not effectively scavenge O2•-, whereas BuOE released from the nanoformulation does retain SOD-like activity. Further, in mice, native BuOE, but not nanoBuOE, rapidly, acutely, and significantly decreases blood pressure, as measured by radiotelemetry. To begin exploring the physiological mechanism by which native BuOE acutely decreases blood pressure, we recorded renal sympathetic nerve activity (RSNA) in rats. RSNA significantly decreased immediately following intravenous injection of BuOE, but not nanoBuOE. These data indicate that nanoformulation of BuOE, a SOD mimic currently in clinical trials in cancer patients, prevents BuOE's negative side effects on blood pressure homeostasis.


Assuntos
Metaloporfirinas , Preparações Farmacêuticas , Porfirinas , Animais , Humanos , Camundongos , Ratos , Superóxido Dismutase
17.
J Control Release ; 327: 266-283, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32711026

RESUMO

Neuroblastoma is the most commonly diagnosed extracranial solid tumor in children. The patients with aggressive metastatic disease or refractory/relapsed neuroblastoma currently face a dismally low chance of survival. Thus, there is a great need for more effective therapies for this illness. In previous studies, we, as well as others, showed that the immune cell chemoattractant C-C motif chemokine ligand 21 (CCL21) is effective as an intratumoral therapy able to slow the growth of cancers. In this current study, we developed and tested an injectable, slow-release, uniform, and optimally loaded alginate nanoformulation of CCL21 as a means to provide prolonged intratumoral treatment. The alginate-nanoformulated CCL21, when injected intratumorally into mice bearing neuroblastoma lesions, significantly prolonged survival and decreased the tumor growth rate compared to CCL21 alone, empty nanoparticles, or buffer. Notably, we also observed complete tumor clearance and subsequent full protection against tumor rechallenge in 33% of nanoformulated CCL21-treated mice. Greater intratumoral presence of nanoformulated CCL21, compared to free CCL21, at days 1 and 2 after treatment ended was confirmed through fluorescent labeling and tracking. Nanoformulated CCL21-treated tumors exhibited a general pattern of prolonged increases in anti-tumor cytokines and relatively lower levels of pro-tumor cytokines in comparison to tumors treated with CCL21 alone or buffer only. Thus, this novel nanoformulation of CCL21 is an effective treatment for neuroblastoma, and may have potential for the delivery of CCL21 to other types of solid tumors in the future and as a slow-release delivery modality for other immunotherapies.


Assuntos
Quimiocina CCL21 , Neuroblastoma , Animais , Linhagem Celular Tumoral , Quimiocina CCL21/uso terapêutico , Humanos , Imunoterapia , Ligantes , Camundongos , Neuroblastoma/tratamento farmacológico
18.
Sci Rep ; 9(1): 16099, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695100

RESUMO

Traumatic brain injury (TBI) is a leading cause of injury-related death worldwide, yet there are no approved neuroprotective therapies that improve neurological outcome post-injury. Transient opening of the blood-brain barrier following injury provides an opportunity for passive accumulation of intravenously administered nanoparticles through an enhanced permeation and retention-like effect. However, a thorough understanding of physicochemical properties that promote optimal uptake and retention kinetics in TBI is still needed. In this study, we present a robust method for magnetic resonance imaging of nanoparticle uptake and retention kinetics following intravenous injection in a controlled cortical impact mouse model of TBI. Three contrast-enhancing nanoparticles with different hydrodynamic sizes and relaxivity properties were compared. Accumulation and retention were monitored by modelling the permeability coefficient, Ktrans, for each nanoparticle within the reproducible mouse model. Quantification of Ktrans for different nanoparticles allowed for non-invasive, multi-time point assessment of both accumulation and retention kinetics in the injured tissue. Using this method, we found that 80 nm poly(lactic-co-glycolic acid) nanoparticles had maximal Ktrans in a TBI when injected 3 hours post-injury, showing significantly higher accumulation kinetics than the small molecule, Gd-DTPA. This robust method will enable optimization of administration time and nanoparticle physicochemical properties to achieve maximum delivery.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/metabolismo , Animais , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/instrumentação , Feminino , Gadolínio DTPA/administração & dosagem , Gadolínio DTPA/química , Gadolínio DTPA/metabolismo , Humanos , Cinética , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo
19.
Mol Pharm ; 16(7): 2872-2883, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150251

RESUMO

Although the prognosis of patients with breast cancer continues to improve, breast cancer metastasis to bones remains high in incidence and challenging to manage. Here, we report the development of bone-homing alendronate (ALN)-anchored biodegradable polymeric micelles for the targeted treatment of metastatic cancer to bone. These micelles exhibited bone protective capacity including the recruitment, differentiation, and resorption activity of the osteoclasts. Encapsulation of docetaxel (DTX), the first-line chemotherapeutic for treatment of metastatic breast cancer, in ALN-modified micelles results in a sustained release, enhanced cytotoxicity, and improved pharmacokinetics. In the syngeneic animal model of late-stage disseminated breast cancer bone metastasis, the treatment with targeted DTX-loaded micelles attenuated the tumorigenesis and significantly improved animal lifespan compared to the conventional surfactant-based formulation (free DTX). These findings indicate potential applications of the osteotropic nanomedicines for bone metastasis treatment.


Assuntos
Alendronato/uso terapêutico , Antineoplásicos/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Neoplasias da Mama/tratamento farmacológico , Docetaxel/uso terapêutico , Micelas , Polímeros , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Transplante Homólogo , Resultado do Tratamento
20.
Infect Dis (Lond) ; 51(2): 131-139, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30499360

RESUMO

BACKGROUND: In both Russia and Sweden, the dominant hepatitis C virus (HCV) is genotype 1, but around one-third of patients have genotype 3 infection. For such countries, HCV genotype testing is recommended prior to therapy. An effective pangenotypic therapy may potentially eliminate the need for genotyping. In this study, we evaluated the efficacy and safety of sofosbuvir/velpatasvir for 12 weeks in patients from Russia and Sweden. METHODS: In an open-label, single-arm phase-3 study, patients could have HCV genotype 1-6 infection and were treatment-naïve or interferon treatment-experienced. All patients received sofosbuvir/velpatasvir, once daily for 12 weeks. The primary endpoint was sustained virologic response 12 weeks post-treatment (SVR12). RESULTS: Of 122 patients screened, 119 were enrolled and treated. Overall, half (50%) were male, 18% had cirrhosis, and 24% had failed prior interferon-based therapy. In total, 66% of patients were infected with HCV genotype 1 (59% 1b and 7% 1a), 6% with genotype 2, and 29% with genotype 3. The overall SVR12 rate was 99% (118/119, 95% confidence interval 95-100%). One treatment-experienced patient infected with HCV genotype 3 experienced virologic relapse after completing treatment. The most common adverse events were headache (16%) and fatigue (7%). Serious adverse events were observed in four patients, but none were related to treatment. No patients discontinued treatment due to adverse events. CONCLUSION: Sofosbuvir/velpatasvir as a pangenotypic treatment for 12 weeks was highly effective in patients from Russia and Sweden infected with HCV genotypes 1, 2, or 3. Sofosbuvir/velpatasvir was safe and well-tolerated. Clinical trial number: ClinicalTrials.gov NCT02722837.


Assuntos
Antivirais/uso terapêutico , Carbamatos/uso terapêutico , Hepatite C/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Sofosbuvir/uso terapêutico , Adolescente , Adulto , Idoso , Antivirais/administração & dosagem , Carbamatos/administração & dosagem , Quimioterapia Combinada , Feminino , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Federação Russa , Sofosbuvir/administração & dosagem , Suécia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...