Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 472, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674884

RESUMO

The original version of this Article contained an error in the author affiliations. Affiliation 5 incorrectly read 'Tyumen State Oil and Gas University, Tyumen, Tyument. Oblast, Russian Federation, 625000'.This has now been corrected in both the PDF and HTML versions of the Article.

2.
Nat Commun ; 9(1): 5423, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575717

RESUMO

Local observations indicate that climate change and shifting disturbance regimes are causing permafrost degradation. However, the occurrence and distribution of permafrost region disturbances (PRDs) remain poorly resolved across the Arctic and Subarctic. Here we quantify the abundance and distribution of three primary PRDs using time-series analysis of 30-m resolution Landsat imagery from 1999 to 2014. Our dataset spans four continental-scale transects in North America and Eurasia, covering ~10% of the permafrost region. Lake area loss (-1.45%) dominated the study domain with enhanced losses occurring at the boundary between discontinuous and continuous permafrost regions. Fires were the most extensive PRD across boreal regions (6.59%), but in tundra regions (0.63%) limited to Alaska. Retrogressive thaw slumps were abundant but highly localized (<10-5%). Our analysis synergizes the global-scale importance of PRDs. The findings highlight the need to include PRDs in next-generation land surface models to project the permafrost carbon feedback.

3.
Nat Commun ; 7: 13043, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725633

RESUMO

Thermokarst is the process whereby the thawing of ice-rich permafrost ground causes land subsidence, resulting in development of distinctive landforms. Accelerated thermokarst due to climate change will damage infrastructure, but also impact hydrology, ecology and biogeochemistry. Here, we present a circumpolar assessment of the distribution of thermokarst landscapes, defined as landscapes comprised of current thermokarst landforms and areas susceptible to future thermokarst development. At 3.6 × 106 km2, thermokarst landscapes are estimated to cover ∼20% of the northern permafrost region, with approximately equal contributions from three landscape types where characteristic wetland, lake and hillslope thermokarst landforms occur. We estimate that approximately half of the below-ground organic carbon within the study region is stored in thermokarst landscapes. Our results highlight the importance of explicitly considering thermokarst when assessing impacts of climate change, including future landscape greenhouse gas emissions, and provide a means for assessing such impacts at the circumpolar scale.

4.
Philos Trans A Math Phys Eng Sci ; 373(2054)2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26438276

RESUMO

We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2-33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9-112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of -14 to -19 Pg C °C(-1) on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10-18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.


Assuntos
Carbono/química , Mudança Climática/estatística & dados numéricos , Ecossistema , Monitoramento Ambiental/métodos , Modelos Estatísticos , Pergelissolo/química , Carbono/análise , Simulação por Computador , Bases de Dados Factuais , Retroalimentação , Congelamento , Modelos Químicos
5.
Nature ; 520(7546): 171-9, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25855454

RESUMO

Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.


Assuntos
Ciclo do Carbono , Mudança Climática , Pergelissolo/química , Regiões Árticas , Dióxido de Carbono/análise , Retroalimentação , Congelamento , Metano/análise , Água do Mar/química , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...