Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 159: 213805, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457904

RESUMO

Bone defects may occur in different sizes and shapes due to trauma, infections, and cancer resection. Autografts are still considered the primary treatment choice for bone regeneration. However, they are hard to source and often create donor-site morbidity. Injectable microgels have attracted much attention in tissue engineering and regenerative medicine due to their ability to replace inert implants with a minimally invasive delivery. Here, we developed novel cell-laden bioprinted gelatin methacrylate (GelMA) injectable microgels, with controllable shapes and sizes that can be controllably mineralized on the nanoscale, while stimulating the response of cells embedded within the matrix. The injectable microgels were mineralized using a calcium and phosphate-rich medium that resulted in nanoscale crystalline hydroxyapatite deposition and increased stiffness within the crosslinked matrix of bioprinted GelMA microparticles. Next, we studied the effect of mineralization in osteocytes, a key bone homeostasis regulator. Viability stains showed that osteocytes were maintained at 98 % viability after mineralization with elevated expression of sclerostin in mineralized compared to non-mineralized microgels, showing that mineralization can effectively enhances osteocyte maturation. Based on our findings, bioprinted mineralized GelMA microgels appear to be an efficient material to approximate the bone microarchitecture and composition with desirable control of sample injectability and polymerization. These bone-like bioprinted mineralized biomaterials are exciting platforms for potential minimally invasive translational methods in bone regenerative therapies.


Assuntos
Gelatina , Microgéis , Gelatina/farmacologia , Gelatina/química , Materiais Biocompatíveis , Metacrilatos/química
2.
bioRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873385

RESUMO

Bone defects may occur in different sizes and shapes due to trauma, infections, and cancer resection. Autografts are still considered the primary treatment choice for bone regeneration. However, they are hard to source and often create donor-site morbidity. Injectable microgels have attracted much attention in tissue engineering and regenerative medicine due to their ability to replace inert implants with a minimally invasive delivery. Here, we developed novel cell-laden bioprinted gelatin methacrylate (GelMA) injectable microgels, with controllable shapes and sizes that can be controllably mineralized on the nanoscale, while stimulating the response of cells embedded within the matrix. The injectable microgels were mineralized using a calcium and phosphate-rich medium that resulted in nanoscale crystalline hydroxyapatite deposition and increased stiffness within the crosslinked matrix of bioprinted GelMA microparticles. Next, we studied the effect of mineralization in osteocytes, a key bone homeostasis regulator. Viability stains showed that osteocytes were maintained at 98% viability after mineralization with elevated expression of sclerostin in mineralized compared to non-mineralized microgels, indicating that mineralization effectively enhances osteocyte maturation. Based on our findings, bioprinted mineralized GelMA microgels appear to be an efficient material to approximate the bone microarchitecture and composition with desirable control of sample injectability and polymerization. These bone-like bioprinted mineralized biomaterials are exciting platforms for potential minimally invasive translational methods in bone regenerative therapies.

3.
Adv Healthc Mater ; 12(11): e2200976, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808718

RESUMO

Bone autografts remain the gold standard for bone grafting surgeries despite having increased donor site morbidity and limited availability. Bone morphogenetic protein-loaded grafts represent another successful commercial alternative. However, the therapeutic use of recombinant growth factors has been associated with significant adverse clinical outcomes. This highlights the need to develop biomaterials that closely approximate the structure and composition of bone autografts, which are inherently osteoinductive and biologically active with embedded living cells, without the need for added supplements. Here, injectable growth factor-free bone-like tissue constructs are developed, that closely approximate the cellular, structural, and chemical composition of bone autografts. It is demonstrated that these micro-constructs are inherently osteogenic, and demonstrate the ability to stimulate mineralized tissue formation and regenerate bone in critical-sized defects in-vivo. Furthermore, the mechanisms that allow human mesenchymal stem cells (hMSCs) to be highly osteogenic in these constructs, despite the lack of osteoinductive supplements, are assessed, whereby Yes activated protein (YAP) nuclear localization and adenosine signaling appear to regulate osteogenic cell differentiation. The findings represent a step toward a new class of minimally invasive, injectable, and inherently osteoinductive scaffolds, which are regenerative by virtue of their ability to mimic the tissue cellular and extracellular microenvironment, thus showing promise for clinical applications in regenerative engineering.


Assuntos
Microgéis , Humanos , Regeneração Óssea/fisiologia , Osteogênese/fisiologia , Osso e Ossos , Materiais Biocompatíveis/química , Diferenciação Celular/fisiologia , Engenharia Tecidual , Alicerces Teciduais/química
4.
Bone Rep ; 17: 101629, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36325166

RESUMO

Compromises to collagen and mineral lead to a decrease in whole bone quantity and quality in a variety of systemic diseases, yet, clinically, disease manifestations differ between craniofacial and long bones. Collagen alterations can occur through post-translational modification via lysyl oxidase (LOX), which catalyzes enzymatic collagen cross-link formation, as well as through non-enzymatic advanced glycation end products (AGEs) such as pentosidine and carboxymethyl-lysine (CML). Characterization of the cross-links and AGEs, and comparison of the mineral and collagen modifications in craniofacial and long bones represent a critical gap in knowledge. However, alterations to either the mineral or collagen in bone may contribute to disease progression and, subsequently, the anatomical site dependence of a variety of diseases. Therefore, we hypothesized that collagen cross-links and AGEs differ between craniofacial and long bones and that altered collagen cross-linking reduces mineral quality in an anatomic location dependent. To study the effects of cross-link inhibition on mineralization between anatomical sites, beta-aminoproprionitrile (BAPN) was administered to rapidly growing, 5-8 week-old male mice. BAPN is a dose-dependent inhibitor of LOX that pharmacologically alters enzymatic cross-link formation. Long bones (femora) and craniofacial bones (mandibles) were compared for mineral quantity and quality, collagen cross-link and AGE profiles, and tissue level mechanics, as well as the response to altered cross-links via BAPN. A highly sensitive liquid chromatography/mass spectrometry (LC-MS) method was developed which allowed for quantification of site-dependent accumulation of the advanced glycation end-product, carboxymethyl-lysine (CML). CML was ∼8.3× higher in the mandible than the femur. The mandible had significantly higher collagen maturation, mineral crystallinity, and Young's modulus, but lower carbonation, than the femur. BAPN also had anatomic specific effects, leading to significant decreases in mature cross-links in the mandible, and an increase in mineral carbonation in the femur. This differential response of both the mineral and collagen composition to BAPN between the mandible and femur highlights the need to further understand how inherent compositional differences in collagen and mineral contribute to anatomic-site specific manifestations of disease in both craniofacial and long bones.

5.
Bone ; 163: 116481, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35817317

RESUMO

Bone strength is generally thought to decline with aging and prior work has compared traits between younger and older cohorts to identify the structural and compositional changes that contribute to fracture risk with age. However, for men, the majority of individuals do not fracture a bone in their lifetime. While fracture occurrence is multifactorial, the absence of fracture in the majority of males suggests that some individuals maintain bone strength or do not lose enough strength to fracture, whereas others do lose strength with aging. Consequently, not all structural and material changes observed with age may lead to strength-decline. We propose that consideration of different subgroups of older individuals will provide a more precise understanding of which structural and material changes directly contribute to strength-decline. We identified subgroups using latent profile analysis (LPA), which is a clustering-based algorithm that takes multiple continuous variables into account. Human cadaveric male femoral diaphyses (n = 33, 26-89 years) were subjected to whole bone and tissue-level mechanical tests. Morphological traits, porosity, and cortical tissue mineral density (Ct.TMD) were obtained, as were measures of enzymatic cross-links and the advanced glycation end product, pentosidine (PEN). A univariate analysis first identified a younger cohort (YNG, n = 11) and older cohort (n = 22). LPA was then conducted using three mechanical traits (whole bone strength, tissue-level strength, and tissue-level post-yield strain), resulting in a further stratification of the older group into two similarly aged groups (p = 0.558), but one with higher (OHM, n = 16) and another with lower mechanical properties (OLM, n = 6). The OLM group exhibited lower whole bone strength (p = 0.016), tissue-level strength (p < 0.001), and tissue-level post-yield strain (p < 0.001) compared to the YNG group. Meanwhile, the OHM only exhibited significantly lower tissue-level post-yield strain (p < 0.001), compared to the YNG group. Between the two older groups, the OHM group exhibited higher whole bone strength (p = 0.037), tissue-level strength (p = 0.006), and tissue-level post-yield strain (p = 0.012) than the OLM group. Probing the morphological and compositional relationships among the three groups, both OHM and OLM exhibited increased PEN content (p < 0.001, p = 0.008 respectively) and increased Log(cortical pore score) relative to YNG (p = 0.003, p < 0.001 respectively). Compared to the OHM group, the OLM also exhibited increased marrow area (p = 0.049), water content (p = 0.048), and decreased Ct.TMD (p = 0.005). The key traits that were unique to the OLM group compared to YNG were decreased Ct.TMD (p < 0.001) and increased Log(porosity) (p = 0.002). There were many properties that differed between the younger and older groups, but not all were associated with reduced mechanical properties, highlighting the relative importance of certain age-related traits such as porosity, Ct.TMD, water content, and marrow area that were unique to the OLM group. Overall, this work supports the hypothesis that there are subgroups of men showing different strength-decline trajectories with aging and establishes a basis for refining our understanding of which age-related changes are directly contributing to decreased strength.


Assuntos
Densidade Óssea , Fraturas Ósseas , Idoso , Fenômenos Biomecânicos , Osso e Ossos , Fêmur , Humanos , Masculino , Água
6.
J Struct Biol ; 212(3): 107650, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096230

RESUMO

Understanding skeletal aging and predicting fracture risk is increasingly important with a growing elderly population. We hypothesized that when categorized by external bone size, the male femoral diaphysis would show different strength-age trajectories which can be explained by changes in morphology, composition and collagen cross-linking. Cadaveric male femora were sorted into narrow (n = 15, 26-89 years) and wide (n = 15, 29-82 years) groups based upon total cross-sectional area of the mid-shaft normalized to bone length (Tt.Ar/Le) and tested for whole bone strength, tissue-level strength, and tissue-level post-yield strain. Morphology, cortical TMD (Ct.TMD), porosity, direct measurements of enzymatic collagen cross-links, and pentosidine were obtained. The wide group alone showed significant negative correlations with age for tissue-level strength (R2 = 0.50, p = 0.002), tissue-level post-yield strain (R2 = 0.75, p < 0.001) and borderline significance for whole bone strength (R2 = 0.14, p = 0.108). Ct.TMD correlated with whole bone and tissue-level strength for both groups, but pentosidine normalized to enzymatic cross-links correlated negatively with all mechanical properties for the wide group only. The multivariate analysis showed that just three traits for each mechanical property explained the majority of the variance for whole bone strength (Ct.Area, Ct.TMD, Log(PEN/Mature; R2 = 0.75), tissue-level strength (Age, Ct.TMD, Log(DHLNL/HLNL); R2 = 0.56), and post-yield strain (Age, Log(Pyrrole), Ct.Area; R2 = 0.51). Overall, this highlights how inter-individual differences in bone structure, composition, and strength change with aging and that a one-size fits all understanding of skeletal aging is insufficient.


Assuntos
Densidade Óssea/fisiologia , Fêmur/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Colágeno/metabolismo , Fêmur/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
7.
Bone ; 137: 115402, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360900

RESUMO

Bone morphogenetic protein (BMP) signaling in osteoblasts plays critical roles in skeletal development and bone homeostasis. Our previous studies showed loss of function of BMPR1A, one of the type 1 receptors for BMPs, in osteoblasts results in increased trabecular bone mass in long bones due to an imbalance between bone formation and bone resorption. Decreased bone resorption was associated with an increased mature-to-immature collagen cross-link ratio and mineral-matrix ratios in the trabecular compartments, and increased tissue-level biomechanical properties. Here, we investigated the bone mass, bone composition and biomechanical properties of ribs and spines in the same genetically altered mouse line to compare outcomes by loss of BMPR1A functions in bones from different anatomic sites and developmental origins. Bone mass was significantly increased in both cortical and trabecular compartments of ribs with minimal to modest changes in compositions. While tissue-levels of biomechanical properties were not changed between control and mutant animals, whole bone levels of biomechanical properties were significantly increased in association with increased bone mass in the mutant ribs. For spines, mutant bones showed increased bone mass in both cortical and trabecular compartments with an increase of mineral content. These results emphasize the differential role of BMP signaling in osteoblasts in bones depending on their anatomical locations, functional loading requirements and developmental origin.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I , Osso e Ossos , Osteoblastos , Transdução de Sinais , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Proteínas Morfogenéticas Ósseas , Camundongos , Fenótipo
8.
Curr Opin Biomed Eng ; 11: 76-84, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32864522

RESUMO

Advancements in imaging, computing, microscopy, chromatography, spectroscopy and biological manipulations of animal models, have allowed for a more thorough examination of the hierarchical structure and composition of the skeleton. The ability to map cellular and molecular changes to nano-scale chemical composition changes (mineral, collagen cross-links) and structural changes (porosity, lacuno-canalicular network) to whole bone mechanics is at the forefront of an exciting era of discovery. In addition, there is increasing ability to genetically mimic phenotypes of human disease in animal models to study these structural and compositional changes. Combined, these recent developments have increased the ability to understand perturbations at multiple length scales to better realize the structure-function relationship in bone and inform biomechanical models. The intent of this review is to describe the multiple scales at which bone can characterized, highlighting new techniques such that structural, compositional, and biological changes can be incorporated into biomechanical modeling.

9.
Neoplasia ; 20(7): 657-667, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29800815

RESUMO

A diagnosis of perineural invasion (PNI), defined as cancer within or surrounding at least 33% of the nerve, leads to selection of aggressive treatment in squamous cell carcinoma (SCC). Recent mechanistic studies show that cancer and nerves interact prior to physical contact. The purpose of this study was to explore cancer-nerve interactions relative to clinical outcome. Biopsy specimens from 71 patients with oral cavity SCC were stained with hematoxylin and eosin and immunohistochemical (IHC; cytokeratin, S100, GAP43, Tuj1) stains. Using current criteria, PNI detection was increased with IHC. Overall survival (OS) tended to be poor for patients with PNI (P = .098). OS was significantly lower for patients with minimum tumor-nerve distance smaller than 5 µm (P = .011). The estimated relative death rate decreased as the nerve-tumor distance increased; there was a gradual drop off in death rate from distance equal to zero that stabilized around 500 µm. In PNI-negative patients, nerve diameter was significantly related to OS (HR 2.88, 95%CI[1.11,7.49]). Among PNI-negative nerves, larger nerve-tumor distance and smaller nerve diameter were significantly related to better OS, even when adjusting for T-stage and age (HR 0.82, 95% CI[0.72,0.92]; HR 1.27, 95% CI[1.00,1.62], respectively). GAP43, a marker for neuronal outgrowth, stained less than Tuj1 in nerves at greater distances from tumor (OR 0.76, 95% CI[0.73,0.79]); more GAP43 staining was associated with PNI. Findings from a small group of patients suggest that nerve parameters other than presence of PNI can influence outcome and that current criteria of PNI need to be re-evaluated to integrate recent biological discoveries.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias de Tecido Nervoso/secundário , Idoso , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Progressão da Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica , Estadiamento de Neoplasias , Neoplasias de Tecido Nervoso/metabolismo , Razão de Chances , Modelos de Riscos Proporcionais , Recidiva
10.
Bone ; 88: 74-84, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27113526

RESUMO

Bone morphogenetic protein (BMP) signaling pathways play critical roles in skeletal development and new bone formation. Our previous study, however, showed a negative impact of BMP signaling on bone mass because of the osteoblast-specific loss of a BMP receptor (i.e. BMPR1A) showing increased trabecular bone volume and mineral density in mice. Here, we investigated the bone quality and biomechanical properties of the higher bone mass associated with BMPR1A deficiency using the osteoblast-specific Bmpr1a conditional knockout (cKO) mouse model. Collagen biochemical analysis revealed greater levels of the mature cross-link pyridinoline in the cKO bones, in parallel with upregulation of collagen modifying enzymes. Raman spectroscopy distinguished increases in the mature to immature cross-link ratio and mineral to matrix ratio in the trabecular compartments of cKO femora, but not in the cortical compartments. The mineral crystallinity was unchanged in the cKO in either the trabecular or cortical compartments. Further, we tested the intrinsic material properties by nanoindentation and found significantly higher hardness and elastic modulus in the cKO trabecular compartments, but not in the cortical compartments. Four point bending tests of cortical compartments showed lower structural biomechanical properties (i.e. strength and stiffness) in the cKO bones due to the smaller cortical areas. However, there were no significant differences in biomechanical performance at the material level, which was consistent with the nanoindentation test results on the cortical compartment. These studies emphasize the pivotal role of BMPR1A in the determination of bone quality and mechanical integrity under physiological conditions, with different impact on femoral cortical and trabecular compartments.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Osso Esponjoso/metabolismo , Colágeno/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Fêmur/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais , Animais , Fenômenos Biomecânicos , Matriz Óssea/metabolismo , Osso Esponjoso/fisiologia , Módulo de Elasticidade , Fêmur/fisiologia , Regulação da Expressão Gênica , Dureza , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional
11.
Redox Biol ; 1: 332-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24024168

RESUMO

Nitric oxide (NO) is an ubiquitous signaling molecule of intense interest in many physiological processes. Nitric oxide is a highly reactive free radical gas that is difficult to deliver with precise control over the level and timing that cells actually experience. We describe and characterize a device that allows tunable fluxes and patterns of NO to be generated across the surface upon which cells are cultured. The system is based on a quartz microscope slide that allows for controlled light levels to be applied to a previously described photosensitive NO-releasing polydimethylsiloxane (PDMS). Cells are cultured in separate wells that are either NO-releasing or a chemically similar PDMS that does not release NO. Both wells are then top coated with DowCorning RTV-3140 PDMS and a polydopamine/gelatin layer to allow cells to grow in the culture wells. When the waveguide is illuminated, the surface of the quartz slide propagates light such that the photosensitive polymer is evenly irradiated and generates NO across the surface of the cell culture well and no light penetrates into the volume of the wells where cells are growing. Mouse smooth muscle cells (MOVAS) were grown in the system in a proof of principle experiment, whereby 60% of the cells were present in the NO-releasing well compared to control wells after 17 h. The compelling advantage of illuminating the NO-releasing polymers with the waveguide system is that light can be used to tunably control NO release while avoiding exposing cells to optical radiation. This device provides means to quantitatively control the surface flux, timing and duration of NO cells experience and allows for systematic study of cellular response to NO generated at the cell/surface interface in a wide variety of studies.


Assuntos
Técnicas de Cultura de Células/instrumentação , Óxido Nítrico/metabolismo , Animais , Linhagem Celular , Dimetilpolisiloxanos/química , Desenho de Equipamento , Camundongos , Processos Fotoquímicos , Quartzo
12.
ACS Appl Mater Interfaces ; 5(17): 8430-9, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23964741

RESUMO

An S-nitroso-N-acetylpenicillamine (SNAP) derivatization approach was used to modify existing free primary amines found in fibrin (a natural protein-based biomaterial) to generate a controlled nitric oxide (NO) releasing scaffold material. The duration of the derivatization reaction affects the NO release kinetics, the induction of controlled NO-release, hydrophobicity, swelling behavior, elastic moduli, rheometric character, and degradation behavior. These properties were quantified to determine changes in fibrin hydrogels following covalent attachment of SNAP. NO-releasing materials exhibited minimal cytotoxicity when cultured with fibroblasts or osteoblasts. Cells maintained viability and proliferative character on derivatized materials as demonstrated by Live/Dead cell staining and counting. In addition, SNAP-derivatized hydrogels exhibited an antimicrobial character indicative of NO-releasing materials. SNAP derivatization of natural polymeric biomaterials containing free primary amines offers a means to generate inducible NO-releasing biomaterials for use as an antimicrobial and regenerative support for tissue engineering.


Assuntos
Aminas/química , Materiais Biocompatíveis/química , Fibrina/química , Doadores de Óxido Nítrico/química , S-Nitroso-N-Acetilpenicilamina/química , Células 3T3 , Animais , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/toxicidade , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Engenharia Tecidual
13.
Nitric Oxide ; 27(4): 228-34, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22921992

RESUMO

Despite the documented potential to leverage nitric oxide generation to improve in vivo performance of implanted devices, a key limitation to current NO releasing materials tested thus far is that there has not been a means to modulate the level of NO release after it has been initiated. We report the fabrication of a wireless platform that uses light to release NO from a polymethylmethacrylate (PMMA) optical fiber coated with an S-nitroso-N-acetylpenicillamine derivatized polydimethylsiloxane (SNAP-PDMS). We demonstrate that a VAOL-5GSBY4 LED (λ(dominant)=460 nm) can be used as a dynamic trigger to vary the level of NO released from 500 µm diameter coated PMMA. The ability to generate programmable sequences of NO flux from the surface of these coated fibers offers precise spatial and temporal control over NO release and provides a platform to begin the systematic study of in vivo physiological response to implanted devices. NO surface fluxes up to 3.88 ± 0.57 × 10(-10)mol cm(-2)min(-1) were achieved with -100 µm thick coatings on the fibers and NO flux was pulsed, ramped and held steady using the wireless platform developed. We demonstrate the NO release is linearly proportional to the drive current applied to the LED (and therefore level of light produced from the LED). This system allow the surface flux of NO from the fibers to be continuously changed, providing a means to determine the level and duration of NO needed to mediate physiological response to blood contacting and subcutaneous implants and will ultimately lead to the intelligent design of NO releasing materials tailored to specific patterns of NO release needed to achieve reliable in vivo performance for intravascular and subcutaneous sensors and potentially for a wide variety of other implanted biomedical devices.


Assuntos
Doadores de Óxido Nítrico/metabolismo , Óxido Nítrico/química , Fibras Ópticas , S-Nitroso-N-Acetilpenicilamina/metabolismo , Preparações de Ação Retardada , Dimetilpolisiloxanos/química , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/química , Polimetil Metacrilato/química , Próteses e Implantes , S-Nitroso-N-Acetilpenicilamina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...