Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 474(1): 179-194, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27831490

RESUMO

Natural killer (NK) cells are lymphocytes of the innate immune system that eliminate virally infected or malignantly transformed cells. NK cell function is regulated by diverse surface receptors that are both activating and inhibitory. Among them, the homodimeric Ly49 receptors control NK cell cytotoxicity by sensing major histocompatibility complex class I molecules (MHC-I) on target cells. Although crystal structures have been reported for Ly49/MHC-I complexes, the underlying binding mechanism has not been elucidated. Accordingly, we carried out thermodynamic and kinetic experiments on the interaction of four NK Ly49 receptors (Ly49G, Ly49H, Ly49I and Ly49P) with two MHC-I ligands (H-2Dd and H-2Dk). These Ly49s embrace the structural and functional diversity of the highly polymorphic Ly49 family. Combining surface plasmon resonance, fluorescence anisotropy and far-UV circular dichroism (CD), we determined that the best model to describe both inhibitory and activating Ly49/MHC-I interactions is one in which the two MHC-I binding sites of the Ly49 homodimer present similar binding constants for the two sites (∼106 M-1) with a slightly positive co-operativity in some cases, and without far-UV CD observable conformational changes. Furthermore, Ly49/MHC-I interactions are diffusion-controlled and enthalpy-driven. These features stand in marked contrast with the activation-controlled and entropy-driven interaction of Ly49s with the viral immunoevasin m157, which is characterized by strong positive co-operativity and conformational selection. These differences are explained by the distinct structures of Ly49/MHC-I and Ly49/m157 complexes. Moreover, they reflect the opposing roles of NK cells to rapidly scan for virally infected cells and of viruses to escape detection using immunoevasins such as m157.


Assuntos
Antígeno de Histocompatibilidade H-2D/química , Complexos Multiproteicos/química , Subfamília A de Receptores Semelhantes a Lectina de Células NK/química , Animais , Antígeno de Histocompatibilidade H-2D/genética , Antígeno de Histocompatibilidade H-2D/imunologia , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília A de Receptores Semelhantes a Lectina de Células NK/imunologia , Ressonância de Plasmônio de Superfície , Termodinâmica
3.
Biomed Res Int ; 2014: 729618, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25136616

RESUMO

The binding and ingestion of Mycobacterium avium subsp. paratuberculosis (MAP) by host cells are fibronectin (FN) dependent. In several species of mycobacteria, a specific family of proteins allows the attachment and internalization of these bacteria by epithelial cells through interaction with FN. Thus, the identification of adhesion molecules is essential to understand the pathogenesis of MAP. The aim of this study was to identify and characterize FN binding cell wall proteins of MAP. We searched for conserved adhesins within a large panel of surface immunogenic proteins of MAP and investigated a possible interaction with FN. For this purpose, a cell wall protein fraction was obtained and resolved by 2D electrophoresis. The immunoreactive spots were identified by MALDI-TOF MS and a homology search was performed. We selected elongation factor Tu (EF-Tu) as candidate for further studies. We demonstrated the FN-binding capability of EF-Tu using a ligand blot assay and also confirmed the interaction with FN in a dose-dependent manner by ELISA. The dissociation constant of EF-Tu was determined by surface plasmon resonance and displayed values within the µM range. These data support the hypothesis that this protein could be involved in the interaction of MAP with epithelial cells through FN binding.


Assuntos
Adesinas Bacterianas/genética , Fibronectinas/metabolismo , Mycobacterium avium/genética , Paratuberculose/genética , Adesinas Bacterianas/isolamento & purificação , Eletroforese em Gel Bidimensional , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Mycobacterium avium/patogenicidade , Paratuberculose/microbiologia , Paratuberculose/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
J Biol Chem ; 289(8): 5083-96, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24379405

RESUMO

Natural killer (NK) cells discriminate between healthy and virally infected or transformed cells using diverse surface receptors that are both activating and inhibitory. Among them, the homodimeric Ly49 NK receptors, which can adopt two distinct conformations (backfolded and extended), are of particular importance for detecting cells infected with mouse cytomegalovirus (CMV) via recognition of the viral immunoevasin m157. The interaction of m157 with activating (Ly49H) and inhibitory (Ly49I) receptors governs the spread of mouse CMV. We carried out kinetic and thermodynamic experiments to elucidate the Ly49/m157 binding mechanism. Combining surface plasmon resonance, fluorescence anisotropy, and circular dichroism (CD), we determined that the best model to describe both the Ly49H/m157 and Ly49I/m157 interactions is a conformational selection mechanism where only the extended conformation of Ly49 (Ly49*) is able to bind the first m157 ligand followed by binding of the Ly49*/m157 complex to the second m157. The interaction is characterized by strong positive cooperativity such that the second m157 binds the Ly49 homodimer with a 1000-fold higher sequential constant than the first m157 (∼10(8) versus ∼10(5) M(-1)). Using far-UV CD, we obtained evidence for a conformational change in Ly49 upon binding m157 that could explain the positive cooperativity. The rate-limiting step of the overall mechanism is a conformational transition in Ly49 from its backfolded to extended form. The global thermodynamic parameters from the initial state (backfolded Ly49 and m157) to the final state (Ly49*/(m157)2) are characterized by an unfavorable enthalpy that is compensated by a favorable entropy, making the interaction spontaneous.


Assuntos
Muromegalovirus/metabolismo , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas Virais/metabolismo , Animais , Anisotropia , Dicroísmo Circular , Fluorescência , Antígenos de Histocompatibilidade Classe I/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Subfamília A de Receptores Semelhantes a Lectina de Células NK/química , Ligação Proteica , Conformação Proteica , Ressonância de Plasmônio de Superfície , Temperatura , Termodinâmica , Proteínas Virais/química
5.
J Org Chem ; 75(10): 3208-13, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20405932

RESUMO

The existence and stability of the aldehyde-hydrate form of imidazole-2-carboxaldehyde (4) were studied using FTIR together with solution- and solid-state NMR experiments. The results allowed us to conclude that the hydrate form was stable and precipitated at pH = 8.0 and that the aldehyde form was isolated at pH = 6.5 and 9.5. Moreover, the presence of the aldehyde-hydrate form was studied through NMR experiments in D(2)O at both alkaline and acidic pH. In addition, the tautomeric forms of the 2-substituted imidazole compounds were also analyzed to investigate the influence of the hybridization on the carbon adjacent to the imidazole ring, by (13)C NMR in DMSO-d(6), acetone-d(6), and CDCl(3). The presence of the syn- and anti-isomers of oxime 8 obtained from 4 were characterized by solid-state NMR and variable-temperature NMR experiments in acetone-d(6).


Assuntos
Aldeídos/química , Imidazóis/síntese química , Água/química , Isótopos de Carbono , Imidazóis/química , Espectroscopia de Ressonância Magnética/normas , Estrutura Molecular , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA