Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631035

RESUMO

Leishmaniasis is a neglected tropical disease affecting millions of people worldwide. A centenary approach to antimonial-based drugs was first initiated with the synthesis of urea stibamine by Upendranath Brahmachari in 1922. The need for new drug development led to resistance toward antimoniates. New drug development to treat leishmaniasis is urgently needed. In this way, searching for new substances with antileishmanial activity, we synthesized ten anthranyl phenylhydrazide and three quinazolinone derivatives and evaluated them against promastigotes and the intracellular amastigotes of Leishmania amazonensis. Three compounds showed good activity against promastigotes 1b, 1d, and 1g, with IC50 between 1 and 5 µM. These new phenylhydrazides were tested against Leishmania arginase, but they all failed to inhibit this parasite enzyme, as we have shown in a previous study. To explain the possible mechanism of action, we proposed the enzyme PTR1 as a new target for these compounds based on in silico analysis. In conclusion, the new anthranyl hydrazide derivatives can be a promising scaffold for developing new substances against the protozoa parasite.

2.
Trop Med Infect Dis ; 7(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36548658

RESUMO

Cancer and parasitic diseases, such as leishmaniasis and Chagas disease, share similarities that allow the co-development of new antiproliferative agents as a strategy to quickly track the discovery of new drugs. This strategy is especially interesting regarding tropical neglected diseases, for which chemotherapeutic alternatives are extremely outdated. We designed a series of (E)-3-aryl-5-(2-aryl-vinyl)-1,2,4-oxadiazoles based on the reported antiparasitic and anticancer activities of structurally related compounds. The synthesis of such compounds led to the development of a new, fast, and efficient strategy for the construction of a 1,2,4-oxadiazole ring on a silica-supported system under microwave irradiation. One hit compound (23) was identified during the in vitro evaluation against drug-sensitive and drug-resistant chronic myeloid leukemia cell lines (EC50 values ranging from 5.5 to 13.2 µM), Trypanosoma cruzi amastigotes (EC50 = 2.9 µM) and Leishmania amazonensis promastigotes (EC50 = 12.2 µM) and amastigotes (EC50 = 13.5 µM). In silico studies indicate a correlation between the in vitro activity and the interaction with tubulin at the colchicine binding site. Furthermore, ADMET in silico predictions indicate that the compounds possess a high druggability potential due to their physicochemical, pharmacokinetic, and toxicity profiles, and for hit 23, it was identified by multiple spectroscopic approaches that this compound binds with human serum albumin (HSA) via a spontaneous ground-state association with a moderate affinity driven by entropically and enthalpically energies into subdomain IIA (site I) without significantly perturbing the secondary content of the protein.

3.
J Pharm Pharmacol ; 74(3): 446-457, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-34850064

RESUMO

OBJECTIVES: This study aimed to evaluate endophytic fungi isolated from Tocoyena bullata and Humiria balsamifera plant species for their antimycobacterial and anti-inflammatory activities, focusing on severe pulmonary tuberculosis cases which are often associated with exacerbated inflammation. METHODS: Mycobacterium suspensions were incubated with the samples for 5 days. RAW 264.7 macrophages stimulated with LPS were also incubated with them for 24 h to assess the inhibition of inflammatory mediator production and cytotoxicity. C57BL/6 mice were infected with Mtb M299 and treated for 15 days with lasiodiplodin (Lasio). KEY FINDINGS: Endophytic fungus Sordaria tamaensis, obtained from T. bullata, was the most promising. Its ethanolic extract impaired mycobacterial growth with MIC50 (µg/ml): 1.5 ± 0.6 (BCG), 66.8 ± 0.1 (H37Rv) and 80.0 ± 0.1 (M299). (R)-(+)-Lasio showed MIC50 92.2 ± 1.8 µg/ml (M299). In addition, Lasio was able to inhibit NO, IL-1ß and TNF-α production and was not cytotoxic for macrophages. M. tuberculosis-infected C57BL/6 animals treated by Lasio reduced the number of acid-fast bacilli, lung pathology, leucocyte influx and proinflammatory cytokine production in the lungs. The class IIa fructose 1,6-bisphosphate aldolase was the predicted hypothetical target of Lasio. CONCLUSIONS: (R)-(+)-Lasio stood out as a promising anti-TB compound, exhibiting anti-inflammatory and antimycobacterial effects, as well as low cytotoxicity.


Assuntos
Anti-Inflamatórios/farmacologia , Antituberculosos/farmacologia , Sordariales/química , Zearalenona/análogos & derivados , Animais , Anti-Inflamatórios/isolamento & purificação , Antituberculosos/isolamento & purificação , Células CACO-2 , Humanos , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/efeitos dos fármacos , Células RAW 264.7 , Rubiaceae/microbiologia , Sordariales/isolamento & purificação , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Zearalenona/isolamento & purificação , Zearalenona/farmacologia
4.
Comput Biol Med ; 136: 104694, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34365277

RESUMO

Mycobacterium tuberculosis was discovered in 1882 by Robert Koch but, since its discovery, the tuberculosis (TB) epidemic has endured, being one of the top 10 causes of death worldwide. Drug-resistant TB continues to be a public health threat and bioactive compounds with a new mode of action (MoA) are needed to overcome this. Since natural products are described as important sources for the development of new drugs, the objective of this work was to identify potential ligands from Brazilian natural products (NPs) for M. tuberculosis targets using molecular modeling tools. Using chemogenomics we identified the Serine/Threonine Protein Kinase PknB as a putative target for 13 NPs from a database from Brazilian biodiversity (NuBBE). Literature data supported further investigation of NuBBE105, NuBBE598, NuBBE936, NuBBE964, NuBBE1045, and NuBBE1180 by molecular docking and dynamics. Key interactions were observed with PknB and simulations confirmed stability and favorable binding energies. Considering structural similarity with PknB, we further explored binding of the NPs to PknA, critical for M. tuberculosis survival, and all of them resembled important interactions with the enzyme, showing stable and favorable binding energies, whilst van der Waals interactions seem to play a key role for binding to PknA and PknB. NuBBE936 and NuBBE1180 have already had their antimycobacterial activity reported and our results can provide a basis for their MoA. Finally, the other NPs which have not been tested against M. tuberculosis deserve further investigation, aiming at the discovery of antimycobacterial drug candidates with innovative MoA.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Produtos Biológicos , Mycobacterium tuberculosis , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Tuberculose , Antituberculosos/farmacologia , Biodiversidade , Produtos Biológicos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Tuberculose/tratamento farmacológico
5.
Artigo em Inglês | MEDLINE | ID: mdl-33930525

RESUMO

DNA topoisomerase II enzymes maintain DNA stability during vital processes, such as genome replication, transcription and chromosomal segregation during mitosis and meiosis. In the present work, we analyzed functional aspects of the DNA topoisomerase II (AeTopII) enzyme of the mosquito Aedes aegypti. Here, we show that AeTopII mRNA is expressed at all stages of mosquito development. By in situ hybridization, we found that the AeTopII mRNA is concentrated along the ovarian follicular cells as well as in the region of the follicles. The observed expression profiles likely reflect increased topoisomerase II cellular requirements due to the intense ovarian growth and egg production following blood feeding in Ae. aegypti females. The drug etoposide, a classic inhibitor of topoisomerase II, was used for in vivo testing with 2nd stage larvae, in order to investigate the functional importance of this enzyme in Ae. aegypti survival and development. Inhibition of topoisomerase II activity with etoposide concentrations ranging from 10 to 200 µM did not leads to the immediate death of larvae. However, after 10 days of observation, etoposide treatments resulted in 30-40% decrease in survival, in a dose dependent manner, with persisting larvae and pupae presenting incomplete development, as well as morphological abnormalities. Also, approximately 50% of the treated larvae did not reach the pupal stage. Thus, we conclude that AeTopII is a vital enzyme in the development of Ae. aegypti and its sensitivity to inhibitors should be explored for potential chemical agents to be used in vector control.


Assuntos
Aedes , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo/toxicidade , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Inibidores da Topoisomerase II/toxicidade , Aedes/enzimologia , Aedes/crescimento & desenvolvimento , Animais
6.
Bioorg Med Chem ; 28(10): 115470, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32278712

RESUMO

Acylhydrazones 1a-o, derived from isoniazid, were synthesized and evaluated for Myeloperoxidase (MPO) and Acetylcholinesterase (AChE) inhibition, as well as their antioxidant and metal chelating activities, with the purpose of investigating potential multi-target profiles for the treatment of Alzheimer's disease. Synthesized compounds were tested using the 2,2-diphenyl-2-picrylhydrazyl (DPPH) method and 1i, 1j and 1 m showed radical scavenging ability. Compounds 1b, 1 h, 1i, 1 m and 1o inhibited MPO activity (10 µM) at 96.1 ± 5.5%, 90 ± 2.1%, 100.3 ± 1.7%, 80.1 ± 9.4% and 82.2 ± 10.6%, respectively, and only compound 1 m was able to inhibit 54.2 ± 1.7% of AChE activity (100 µM). Docking studies of the most potent compound 1 m were carried out, and the computational results provided the theoretical basis of enzyme inhibition. Furthermore, compound 1 m was able to form complexes with Fe2+ and Zn2+ ions in a 2:1 ligand:metal ratio according to the Job Plot method.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Quelantes/farmacologia , Inibidores da Colinesterase/farmacologia , Hidrazonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Quelantes/síntese química , Quelantes/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Peroxidase/antagonistas & inibidores , Peroxidase/metabolismo , Picratos/antagonistas & inibidores , Relação Estrutura-Atividade
7.
J Biomol Struct Dyn ; 38(7): 2116-2127, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31190614

RESUMO

Herpes simplex virus type 1 (HSV-1) infections affect about two-thirds of the world population, and the standard treatment consists of acyclovir (ACV) and its analogs, which interact with thymidine kinase (TK) blocking viral replication. Lately, the emergence of ACV-resistant strains has been reported, especially associated with TK mutations. In this context, ACV therapy fails against isolates encoding Y172C and Y53H/R163H TK mutants, but the molecular mechanism of drug resistance remains unclear. Thus, we examined the effects of these mutations on ACV and the cofactor ATP binding through molecular modeling approaches. We showed that Y172C prevents the anchoring of the aromatic ring of ACV through π-π stacking interactions, leading to an inversed binding mode and different interactions. On the other hand, Y53H/R163H remarkably affected the cofactor binding mode which shifted away from its binding site and also influenced the interaction network of ACV. This is likely due to the loss of polar interactions with R163 residue. Unlike what was observed in the wild-type complex, both drug and cofactor binding poses were not well positioned to allow the phosphorylation reaction which explains the resistance observed. Moreover, energy analysis corroborated the experimental data and showed lower theoretical affinity of ACV with mutant enzymes resulted from energetic loss in polar solvation in Y172C and electrostatic terms in Y53H/R163H mutant enzyme. Therefore, our study shed light on the resistance mechanism toward ACV of two mutant TKs identified in clinical HSV-1 strains and may further support the development of new anti-herpetic drugs to treat resistant infections. [Formula: see text] Communicated by Ramaswamy H. Sarma.


Assuntos
Aciclovir , Herpesvirus Humano 1 , Aciclovir/farmacologia , Antivirais/farmacologia , Farmacorresistência Viral/genética , Herpesvirus Humano 1/genética , Timidina Quinase/genética , Replicação Viral
8.
Artigo em Inglês | MEDLINE | ID: mdl-30981909

RESUMO

Roundup® is currently the most widely used and sold agricultural pesticide in the world. The objective of this work was to investigate the effects of Roundup® on energy metabolism during zebrafish (Danio rerio) embryogenesis. The embryo toxicity test was performed for 96 h post-fertilisation and the sublethal concentration of Roundup® was defined as 58.3 mg/L, which resulted in failure to inflate the swim bladder. Biochemical assays were performed with viable embryos following glyphosate exposure, and no significant effects on protein, glucose, glycogen, triglyceride levels or the enzymatic activities of alanine aminotransferase and aspartate aminotransferase were observed. However, the activity of hexokinase was significantly altered following exposure to 11.7 mg/L Roundup®. Through molecular docking we have shown for the first time that the interactions of glucokinase and hexokinases 1 and 2 with glyphosate showed significant interactions in the active sites, corroborating the biochemical results of hexokinase activity in zebrafish exposed to the chemical. From the results of molecular docking interactions carried out on the Zfishglucok, ZfishHK1 and ZfishHK2 models with the glyphosate linker, it can be concluded that there are significant interactions between glyphosate and active sites of glucokinase and hexokinase 1 and 2 proteins. The present work suggests that Roundup® can induce problems in fish embryogenesis relating to the incapacity of swim bladder to inflate. This represents the first study demonstrating the interaction of glyphosate with hexokinase and its isoforms.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glicina/análogos & derivados , Peixe-Zebra/embriologia , Animais , Sítios de Ligação , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucoquinase/metabolismo , Glicina/administração & dosagem , Glicina/toxicidade , Hexoquinase/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Conformação Proteica , Glifosato
9.
Eur J Med Chem ; 163: 911-931, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30612088

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a major global health problem. Among other conditions, it has been associated with chronic airway and lung parenchyma inflammation. At present, the available therapies are not capable of reducing the progression or suppressing inflammation associated to COPD. Therefore, there is a pressing need to find new treatments. Cigarette smoking (CS) is clearly the number one risk factor in the development of COPD since it causes oxidative stress and triggers inflammatory responses in the lungs of COPD patients. Numerous evidences indicate that oxidative stress plays a central role in the progression of the disease. Therefore, effective therapeutic antioxidant measures are urgently needed to control and mitigate local as well as systemic oxygen bursts in COPD. Historically, natural products (NPs) are the main source of potential drugs and their antioxidant potential has been widely recognized. Furthermore, various reports have suggested that NPs act as modulators of targets related to COPD, and some of them exert a multi-target mode of action. Among these multi-target NPs, some of the most promising are resveratrol, a potent antioxidant found in wine, and curcumin, found in turmeric. NPs with potential multi-target action have demonstrated anti-inflammatory, anticancer, cardio protective and neuroprotective properties and some of them have shown potential use in the treatment of chronic diseases featured by oxidative stress.


Assuntos
Produtos Biológicos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Animais , Produtos Biológicos/farmacologia , Humanos , Substâncias Protetoras/uso terapêutico
10.
J Steroid Biochem Mol Biol ; 185: 189-199, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30193921

RESUMO

Candidiasis is the most common fungal infection in immunocompromised patients, and Candida albicans is the fourth leading agent of nosocomial infections. Mortality from this infection is significant; however, the therapeutic treatment is limited, which demands the search for new drugs and new targets. In this context, oxidosqualene cyclase (OSC) catalyzes the cyclization of the 2,3-oxidosqualene to form lanosterol, an intermediate of ergosterol biosynthesis. Therefore, this enzyme constitutes an attractive therapeutic target. Thus, the aim of this study is to identify potential inhibitors of C. albicans OSC (CaOSC) from a marketed drugs database in order to discover new antifungal agents. The CaOSC 3D model was constructed using the Swiss-Model server and important features for CaOSC inhibition were identified by molecular docking of known inhibitors using Autodock Vina 1.1.2. Subsequently, virtual screening helped to identify calcitriol, the active form of vitamin D, and other four drugs, as potential inhibitors of CaOSC. The selected drugs presented an interesting pattern of interactions with this enzyme, including hydrogen bond with Asp450, a key residue in the active site. Thus, the antifungal activity of calcitriol was evaluated in vitro against Candida spp strains. Calcitriol showed antifungal activity against C. albicans and C. tropicalis, which reinforces the potential of this compound as candidate of CaOSC inhibitor. In short, the present study provides important insights for the development of new oxidosqualene cyclase inhibitors as antifungals.


Assuntos
Antifúngicos/farmacologia , Calcitriol/farmacologia , Candida albicans/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Candidíase/tratamento farmacológico , Transferases Intramoleculares/antagonistas & inibidores , Sequência de Aminoácidos , Doxazossina/farmacologia , Reposicionamento de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
11.
Environ Sci Pollut Res Int ; 25(27): 26916-26926, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30006815

RESUMO

Bisphenol A (BPA) is a well-known endocrine disruptor with several effects on reproduction, development, and cancer incidence, and it is highly used in the plastic industry. Bisphenol S (BPS) was proposed as an alternative to BPA since it has a similar structure and can be used to manufacture the same products. Some reports show that BPA interferes with thyroid function, but little is known about the involvement of BPS in thyroid function or how these molecules could possibly modulate at the same time the principal genes involved in thyroid physiology. Thus, the aims of this work were to evaluate in silico the possible interactions of BPA and BPS with the thyroid transcription factors Pax 8 and TTF1 and to study the actions in vivo of these compounds in zebrafish thyroid gene expression. Adult zebrafish treated with BPA or BPS showed that sodium iodide symporter, thyroglobulin, and thyroperoxidase genes were negatively or positively regulated, depending on the dose of the exposure. Human Pax 8 alignment with zebrafish Pax 8 and Rattus norvegicus TTF1 alignment with zebrafish TTF1 displayed highly conserved regions in the DNA binding sites. Molecular docking revealed the in silico interactions between the protein targets Pax 8 and TTF1 with BPA and BPS. Importance of some amino acids residues is highlighted and ratified by literature. There were no differences between the mean energy values for BPA docking in Pax 8 or TTF1. However, BPS energy values were lower in TTF1 docking compared to Pax 8 values. The number of amino acids on the protein interface was important for Pax 8 but not for TTF1. The main BPA interactions with proteins occurred through Van der Waals forces and pi-alkyl and alkyl interactions, while BPS interactions mainly occurred through carbon hydrogen bonds and conventional hydrogen bonds in addition to Van der Waals forces and pi-alkyl interactions. These data point to a possible interaction of BPA and BPS with Pax 8 and TTF1.


Assuntos
Compostos Benzidrílicos/química , Disruptores Endócrinos/química , Fenóis/química , Glândula Tireoide/metabolismo , Animais , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Humanos , Simulação de Acoplamento Molecular , Fenóis/toxicidade , Ratos , Reprodução , Sulfonas , Glândula Tireoide/química , Peixe-Zebra
12.
ChemMedChem ; 13(14): 1395-1404, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29856519

RESUMO

Molecules containing an (cyanovinyl)arene moiety are known as tyrphostins because of their ability to inhibit proteins from the tyrosine kinase family, an interesting target for the development of anticancer and trypanocidal drugs. In the present work, (E)-(cyanovinyl)benzeneboronic acids were synthesized by Knoevenagel condensations without the use of any catalysts in water through a simple protocol that completely avoided the use of organic solvents in the synthesis and workup process. The in vitro anticancer and trypanocidal activities of the synthesized boronic acids were also evaluated, and it was discovered that the introduction of the boronic acid functionality improved the activity of the boronic tyrphostins. In silico target fishing with the use of a chemogenomic approach suggested that tyrosine-phosphorylation-regulated kinase 1a (DYRK1A) was a potential target for some of the designed compounds.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos de Boro/química , Compostos de Boro/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Tirfostinas/química , Tirfostinas/farmacologia , Animais , Antineoplásicos/síntese química , Compostos de Boro/síntese química , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Doença de Chagas/tratamento farmacológico , Desenho de Fármacos , Humanos , Camundongos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Tripanossomicidas/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Tirfostinas/síntese química
13.
Nat Prod Res ; 32(22): 2720-2723, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28927283

RESUMO

Secondary metabolites isolated from Simira eleiezeriana and Simira glaziovii were evaluated against herpes simplex virus (HSV-1) and (HSV-2). The 50% effective concentrations values (EC50) were calculated from the dose-response curve and the selectivity index (SI) against the virus. The physicochemical data LogP, (PSA), (NRB), (HBA) and (HBD) were obtained using Marvin Sketch. Among the tested compounds, conipheraldeyde, harman and simirane A showed better results with EC50 6.39; 4.90; 4.61 µg/mL and SI 78.3; 11.8; 7.01, respectively, for HSV-1, and EC50 41.2; 71.8; 3.73 µg/mL and SI 12.1; 24.7; 8.7, respectively, for HSV-2. The percentage of inhibition (PI) obtained for HSV-1 were higher than 60%, and for HSV-2 these compounds showed PI > 90%. The physical chemical data showed that the most active compounds satisfy the attributes for drugs with good oral bioavailability.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Rubiaceae/química , Animais , Antivirais/isolamento & purificação , Chlorocebus aethiops , Compostos Fitoquímicos/isolamento & purificação , Casca de Planta/química , Células Vero
14.
J Steroid Biochem Mol Biol ; 171: 305-317, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28479228

RESUMO

Targeting the sterol biosynthesis pathway has been explored for the development of new bioactive compounds. Among the enzymes of this pathway, oxidosqualene cyclase (OSC) which catalyzes lanosterol cyclization from 2,3-oxidosqualene has emerged as an attractive target. In this work, we reviewed the most promising OSC inhibitors from different organisms and their potential for the development of new antiparasitic, antifungal, hypocholesterolemic and anticancer drugs. Different strategies have been adopted for the discovery of new OSC inhibitors, such as structural modifications of the natural substrate or the reaction intermediates, the use of the enzyme's structural information to discover compounds with novel chemotypes, modifications of known inhibitors and the use of molecular modeling techniques such as docking and virtual screening to search for new inhibitors. This review brings new perspectives on structural insights of OSC from different organisms and reveals the broad structural diversity of OSC inhibitors which may help evidence lead compounds for further investigations with various therapeutic applications.


Assuntos
Anti-Infecciosos/farmacologia , Anticolesterolemiantes/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Transferases Intramoleculares/antagonistas & inibidores , Modelos Moleculares , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anticolesterolemiantes/química , Anticolesterolemiantes/metabolismo , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antiparasitários/química , Antiparasitários/metabolismo , Antiparasitários/farmacologia , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos/tendências , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Conformação Molecular , Simulação de Acoplamento Molecular/tendências , Conformação Proteica
15.
Ticks Tick Borne Dis ; 8(3): 432-441, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28174118

RESUMO

Cystatins are cysteine peptidase inhibitors that in ticks mediate processes such as blood feeding and digestion. The ixodid tick Ixodes persulcatus is endemic to the Eurasia, where it is the principal vector of Lyme borreliosis. To date, no I. persulcatus cystatin has been characterized. In the present work, we describe three novel cystatins from I. persulcatus, named JpIpcys2a, JpIpcys2b and JpIpcys2c. In addition, the potential of tick cystatins as cross-protective antigens was evaluated by vaccination of hamsters using BrBmcys2c, a cystatin from Rhipicephalus microplus, against I. persulcatus infestation. Sequence analysis showed that motifs that are characteristic of cystatins type 2 are fully conserved in JpIpcys2b, while mutations are present in both JpIpcys2a and JpIpcys2c. Protein-protein docking simulations further revealed that JpIpcys2a, JpIpcys2b and JpIpcys2c showed conserved binding sites to human cathepsins L, all of them covering the active site cleft. Cystatin transcripts were detected in different I. persulcatus tissues and instars, showing their ubiquitous expression during I. persulcatus development. Serological analysis showed that although hamsters immunized with BrBmcys2c developed a humoral immune response, this response was not adequate to protect against a heterologous challenge with I. persulcatus adult ticks. The lack of cross-protection provided by BrBmcys2c immunization is perhaps linked to the fact that cystatins cluster into multigene protein families that are expressed differentially and exhibit functional redundancy. How to target such small proteins that are secreted in low quantities remains a challenge in the development of suitable anti-tick vaccine antigens.


Assuntos
Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Cistatinas/química , Cistatinas/genética , Ixodes/metabolismo , Infestações por Carrapato/prevenção & controle , Animais , Anticorpos/sangue , Anticorpos/imunologia , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/isolamento & purificação , Sítios de Ligação , Catepsina L/química , Cricetinae , Humanos , Imunidade Humoral , Ixodes/imunologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Família Multigênica , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Rhipicephalus/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
16.
Med Chem ; 13(2): 149-158, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27396731

RESUMO

BACKGROUND: Chagas disease is a public health problem caused by Trypanosoma cruzi. Cruzain is a pharmacological target for designing a new drug against this parasite. Hydrazone and Nacylhydrazone derivatives have been traditionally associated as potential Cruzain inhibitors. Additionally, benzenesulfonyl derivatives show trypanocidal activity. Therefore, in this study, the combination of both structures has been taken into account for drug design. METHODS: Seven benzenesulfonylhydrazone (BS-H) and seven N-propionyl benzenesulfonylhydrazone (BS-NAH) derivatives were synthetized and elucidated by infrared spectroscopy, nuclear magnetic resonance, and elemental analysis. All compounds were evaluated biologically in vitro against two strains of Trypanosoma cruzi (NINOA and INC-5), which are endemic in Mexico, and compared with the reference drugs nifurtimox and benznidazole. In order to gain insight into the putative molecular origin of the trypanocidal properties of these derivatives, docking studies were carried out with Cruzain. RESULTS: Compounds 4 and 6 (BS-H) and 10, 12-14 (BS-NAH) showed the best biological activity against NINOA and INC-5 strains, respectively. Compound 13 was the most potent trypanocidal compound showing a LC50 of 0.06 µM against INC-5 strain. However, compound 4 showed the best activity against both strains (LC50 <30 µM). Theoretical binding modes obtained suggested covalent binding that could explain their biological activity. CONCLUSION: Benzenesulfonyl and N-propionyl benzenesulfonyl hydrazone derivatives are good options for developing new trypanocidal agents. Particularly, compound 4 could be considered a lead compound.


Assuntos
Benzeno/química , Hidrazonas/síntese química , Hidrazonas/farmacologia , Simulação de Acoplamento Molecular , Tripanossomicidas/síntese química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Técnicas de Química Sintética , Desenho de Fármacos , Hidrazonas/química , Hidrazonas/metabolismo , Concentração Inibidora 50 , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Trypanosoma cruzi/metabolismo
17.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 2922-2933, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27664315

RESUMO

BACKGROUND: Inorganic PPases are essential metal-dependent enzymes that convert pyrophosphate into orthophosphate. This reaction is quite exergonic and provides a thermodynamic advantage for many ATP-driven biosynthetic reactions. We have previously demonstrated that cytosolic PPase from R. microplus embryos is an atypical Family I PPase. Here, we explored the functional role of the cysteine residues located at the homodimer interface, its redox sensitivity, as well as structural and kinetic parameters related to thiol redox status. METHODS: In this work, we used prokaryotic expression system for recombinant protein overexpression, biochemical approaches to assess kinetic parameters, ticks embryos and computational approaches to analyze and predict critical amino acids as well as physicochemical properties at the homodimer interface. RESULTS: Cysteine 339, located at the homodimer interface, was found to play an important role in stabilizing a functional cooperativity between the two catalytic sites, as indicated by kinetics and Hill coefficient analyses of the WT-rBmPPase. WT-rBmPPase activity was up-regulated by physiological antioxidant molecules such as reduced glutathione and ascorbic acid. On the other hand, hydrogen peroxide at physiological concentrations decreased the affinity of WT-rBmPPase for its substrate (PPi), probably by inducing disulfide bridge formation. CONCLUSIONS: Our results provide a new angle in understanding redox control by disulfide bonds formation in enzymes from hematophagous arthropods. The reversibility of the down-regulation is dependent on hydrophobic interactions at the dimer interface. GENERAL SIGNIFICANCE: This study is the first report on a soluble PPase where dimeric cooperativity is regulated by a redox mechanism, according to cysteine redox status.


Assuntos
Pirofosfatase Inorgânica/metabolismo , Multimerização Proteica , Compostos de Sulfidrila/metabolismo , Carrapatos/enzimologia , Aminoácidos/metabolismo , Animais , Cálcio/farmacologia , Dissulfetos/metabolismo , Eletroforese em Gel de Poliacrilamida , Fluoretos/farmacologia , Dissulfeto de Glutationa/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Oxidantes/farmacologia , Oxirredução , Multimerização Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Substâncias Redutoras/farmacologia
18.
PLoS One ; 11(10): e0162895, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695125

RESUMO

Prior investigations showed that increased levels of cyclic AMP down-regulate lung inflammatory changes, stimulating the interest in phosphodiesterase (PDE)4 as therapeutic target. Here, we described the synthesis, pharmacological profile and docking properties of a novel sulfonamide series (5 and 6a-k) designed as PDE4 inhibitors. Compounds were screened for their selectivity against the four isoforms of human PDE4 using an IMAP fluorescence polarized protocol. The effect on allergen- or LPS-induced lung inflammation and airway hyper-reactivity (AHR) was studied in A/J mice, while the xylazine/ketamine-induced anesthesia test was employed as a behavioral correlate of emesis in rodents. As compared to rolipram, the most promising screened compound, 6a (LASSBio-448) presented a better inhibitory index concerning PDE4D/PDE4A or PDE4D/PDE4B. Accordingly, docking analyses of the putative interactions of LASSBio-448 revealed similar poses in the active site of PDE4A and PDE4C, but slight unlike orientations in PDE4B and PDE4D. LASSBio-448 (100 mg/kg, oral), 1 h before provocation, inhibited allergen-induced eosinophil accumulation in BAL fluid and lung tissue samples. Under an interventional approach, LASSBio-448 reversed ongoing lung eosinophilic infiltration, mucus exacerbation, peribronchiolar fibrosis and AHR by allergen provocation, in a mechanism clearly associated with blockade of pro-inflammatory mediators such as IL-4, IL-5, IL-13 and eotaxin-2. LASSBio-448 (2.5 and 10 mg/kg) also prevented inflammation and AHR induced by LPS. Finally, the sulfonamide derivative was shown to be less pro-emetic than rolipram and cilomilast in the assay employed. These findings suggest that LASSBio-448 is a new PDE4 inhibitor with marked potential to prevent and reverse pivotal pathological features of diseases characterized by lung inflammation, such as asthma.


Assuntos
Inibidores da Fosfodiesterase 4/farmacologia , Sulfonamidas/farmacologia , Animais , Domínio Catalítico , AMP Cíclico/análise , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Peroxidase de Eosinófilo/metabolismo , Cobaias , Humanos , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Masculino , Camundongos , Simulação de Acoplamento Molecular/métodos , Contração Muscular/efeitos dos fármacos , Músculo Liso/química , Músculo Liso/efeitos dos fármacos , Peroxidase/metabolismo , Inibidores da Fosfodiesterase 4/síntese química , Isoformas de Proteínas/efeitos dos fármacos , Hipersensibilidade Respiratória/tratamento farmacológico , Sulfonamidas/síntese química , Traqueia/efeitos dos fármacos
19.
Parasit Vectors ; 9: 107, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911930

RESUMO

BACKGROUND: Arthropod-borne diseases are some of the most rapidly spreading diseases. Reducing the vector population is currently the only effective way to reduce case numbers. Central metabolic pathways are potential targets to control vector populations, but have not been well explored to this aim. The information available on energy metabolism, as a way to control lifespan and dispersion through flight of dipteran vectors, is inadequate. METHODS: Phosphofructokinase (PFK) activity was measured in the presence of both of its substrates, fructose-6-phosphate (F6P) and ATP, as well as some allosteric effectors: Fructose- 2,6 - bisphosphate (F2, 6BP), citrate and AMP. Aedes aegypti phosphofructokinase sequence (AaPFK) was aligned with many other insects and also vertebrate sequences. A 3D AaPFK model was produced and docking experiments were performed with AMP and citrate. RESULTS: The kinetic parameters of AaPFK were determined for both substrates: F6P (V = 4.47 ± 0.15 µmol of F1, 6BP/min, K0.5 = 1.48 ± 0.22 mM) and ATP (V = 4.73 ± 0.57 µmol of F1, 6BP/min, K0.5 = 0.43 ± 0.10 mM). F2,6P was a powerful activator of AaPFK, even at low ATP concentrations. AaPFK inhibition by ATP was not enhanced by citrate, consistent with observations in other insects. After examining the sequence alignment of insect and non-insect PFKs, the hypothesis is that a modification of the citrate binding site is responsible for this unique behavior. AMP, a well-known positive effector of PFK, was not capable of reverting ATP inhibition. Aedes, Anopheles and Culex are dengue, malaria and filariasis vectors, respectively, and are shown to have this distinct characteristic in phosphofructokinase control. The alignment of several insect PFKs suggested a difference in the AMP binding site and a significant change in local charges, which introduces a highly negative charge in this part of the protein, making the binding of AMP unlikely. This hypothesis was supported by 3D modeling of PFK with AMP docking, which suggested that the AMP molecule binds in a reverse orientation due to the electrostatic environment. The present findings imply a potential new way to control PFK activity and are a unique feature of these Diptera. CONCLUSIONS: The present findings provide the first molecular explanation for citrate insensitivity in insect PFKs, as well as demonstrating for the first time AMP insensitivity in dipterans. It also identified a potential target for novel insecticides for the control of arthropod-borne diseases.


Assuntos
Culicidae/enzimologia , Culicidae/fisiologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Insetos Vetores , Fosfofrutoquinase-1/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Citratos/metabolismo , Frutosedifosfatos/metabolismo , Frutosefosfatos/metabolismo , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Fosfofrutoquinase-1/química , Conformação Proteica
20.
Eur J Med Chem ; 108: 687-700, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26735910

RESUMO

Cardanol is a phenolic lipid component of cashew nut shell liquid (CNSL), obtained as the byproduct of cashew nut food processing. Being a waste product, it has attracted much attention as a precursor for the production of high-value chemicals, including drugs. On the basis of these findings and in connection with our previous studies on cardanol derivatives as acetylcholinesterase (AChE) inhibitors, we designed a novel series of analogues by including a protonable amino moiety belonging to different systems. Properly addressed docking studies suggested that the proposed structural modifications would allow the new molecules to interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE, thus being able to act as dual binding inhibitors. To disclose whether the new molecules showed the desired profile, they were first tested for their cholinesterase inhibitory activity towards EeAChE and eqBuChE. Compound 26, bearing an N-ethyl-N-(2-methoxybenzyl)amine moiety, showed the highest inhibitory activity against EeAChE, with a promising IC50 of 6.6 µM, and a similar inhibition profile of the human isoform (IC50 = 5.7 µM). As another positive feature, most of the derivatives did not show appreciable toxicity against HT-29 cells, up to a concentration of 100 µM, which indicates drug-conform behavior. Also, compound 26 is capable of crossing the blood-brain barrier (BBB), as predicted by a PAMPA-BBB assay. Collectively, the data suggest that the approach to obtain potential anti-Alzheimer drugs from CNSL is worth of further pursuit and development.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Colinesterases/metabolismo , Fenóis/farmacologia , Doença de Alzheimer/enzimologia , Sítios de Ligação/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Células HT29 , Humanos , Estrutura Molecular , Fenóis/síntese química , Fenóis/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...