Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Genomics ; 16(1): 303, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012624

RESUMO

BACKGROUND: In 2018, our center started a program to offer genetic diagnosis to patients with kidney and liver monogenic rare conditions, potentially eligible for organ transplantation. We exploited a clinical exome sequencing approach, followed by analyses of in silico gene panels tailored to clinical suspicions, obtaining detection rates in line with what reported in literature. However, a percentage of patients remains without a definitive genetic diagnosis. This work aims to evaluate the utility of NGS data re-analysis for those patients with an inconclusive or negative genetic test at the time of first analysis considering that (i) the advance of alignment and variant calling processes progressively improve the detection rate, limiting false positives and false negatives; (ii) gene panels are periodically updated and (iii) variant annotation may change over time. METHODS: 114 patients, recruited between 2018 and 2020, with an inconclusive or negative NGS report at the time of first analysis, were included in the study. Re-alignment and variant calling of previously generated sequencing raw data were performed using the GenomSys Variant Analyzer software. RESULTS: 21 previously not reported potentially causative variants were identified in 20 patients. In most cases (n = 19), causal variants were retrieved out of the re-classification from likely benign to variants of unknown significance (VUS). In one case, the variant was included because of inclusion in the analysis of a newly disease-associated gene, not present in the original gene panel, and in another one due to the improved data alignment process. Whenever possible, variants were validated with Sanger sequencing and family segregation studies. As of now, 16 out of 20 patients have been analyzed and variants confirmed in 8 patients. Specifically, in two pediatric patients, causative variants were de novo mutations while in the others, the variant was present also in other affected relatives. In the remaining patients, variants were present also in non-affected parents, raising questions on their re-classification. CONCLUSIONS: Overall, these data indicate that periodic and systematic re-analysis of negative or inconclusive NGS data reports can lead to new variant identification or reclassification in a small but significant proportion of cases, with benefits for patients' management.


Assuntos
Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Criança , Sequenciamento do Exoma , Software
2.
Hum Genomics ; 17(1): 10, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782285

RESUMO

PURPOSE: Inherited kidney diseases are among the leading causes of kidney failure in children, resulting in increased mortality, high healthcare costs and need for organ transplantation. Next-generation sequencing technologies can help in the diagnosis of rare monogenic conditions, allowing for optimized medical management and therapeutic choices. METHODS: Clinical exome sequencing (CES) was performed on a cohort of 191 pediatric patients from a single institution, followed by Sanger sequencing to confirm identified variants and for family segregation studies. RESULTS: All patients had a clinical diagnosis of kidney disease: the main disease categories were glomerular diseases (32.5%), ciliopathies (20.4%), CAKUT (17.8%), nephrolithiasis (11.5%) and tubular disease (10.5%). 7.3% of patients presented with other conditions. A conclusive genetic test, based on CES and Sanger validation, was obtained in 37.1% of patients. The highest detection rate was obtained for ciliopathies (74.4%), followed by nephrolithiasis (45.5%), tubular diseases (45%), while most glomerular diseases and CAKUT remained undiagnosed. CONCLUSIONS: Results indicate that genetic testing consistently used in the diagnostic workflow of children with chronic kidney disease can (i) confirm clinical diagnosis, (ii) provide early diagnosis in the case of inherited conditions, (iii) find the genetic cause of previously unrecognized diseases and (iv) tailor transplantation programs.


Assuntos
Ciliopatias , Nefrolitíase , Insuficiência Renal Crônica , Criança , Humanos , Fluxo de Trabalho , Testes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...