Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1360618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827737

RESUMO

Psoriasis is a chronic inflammatory disease affecting skin and joints characterized by a chronically altered immune and inflammatory response. Several factors occur from the onset to the development of this disease due to different types of cells spatially and temporally localized in the affected area, such as, keratinocytes, macrophages, neutrophils and T helper lymphocytes. This scenario leads to the chronic release of high levels of inflammatory mediators (i.e., IL-17, IL-23, IL-22, TNF-α, S100 proteins, Defensins) and lastly parakeratosis and thickening of the stratum spinosum. Extracellular vesicles (EVs) are small double membraned biological nanoparticles that are secreted by all cell types and classified, based on dimension and biogenesis, into exosomes, microvesicles and apoptotic bodies. Their role as vessels for long range molecular signals renders them key elements in the pathogenesis of psoriasis, as well as innovative platforms for potential biomarker discovery and delivery of fine-tuned anti-inflammatory therapies. In this review, the role of EVs in the pathogenesis of psoriasis and the modulation of cellular microenvironment has been summarized. The biotechnological implementation of EVs for therapy and research for new biomarkers has been also discussed.


Assuntos
Biomarcadores , Vesículas Extracelulares , Psoríase , Humanos , Psoríase/imunologia , Psoríase/metabolismo , Psoríase/etiologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Animais , Pele/patologia , Pele/imunologia , Pele/metabolismo , Microambiente Celular/imunologia
2.
Small ; : e2400531, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742980

RESUMO

A new generation of an FFP2 (Filtering Face Piece of type 2) smart face mask is achieved by integrating broadband hybrid nanomaterials and a self-assembled optical metasurface. The multifunctional FFP2 face mask shows simultaneously white light-assisted on-demand disinfection properties and versatile biosensing capabilities. These properties are achieved by a powerful combination of white light thermoplasmonic responsive hybrid nanomaterials, which provide excellent photo-thermal disinfection properties, and optical metasurface-based colorimetric biosensors, with a very low limit of pathogens detection. The realized system is studied in optical, morphological, spectroscopic, and cell viability assay experiments and environmental monitoring of harmful pathogens, thus highlighting the extraordinary properties in reusability and pathogens detection of the innovative face mask.

3.
Life (Basel) ; 14(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672695

RESUMO

Oxidative stress represents a hallmark for many degenerative pathologies of the Central Nervous System. Throughout life, the constant pressure of noxious stimuli and/or episodes of traumatic events may expose the brain to a microenvironment where the non-balanced reactive oxygen species inevitably lead to neuronal loss and cognitive decline. HO-1, a 32 kDa heat-shock protein catalyzing the degradation of heme into carbon monoxide (CO), iron and biliverdin/bilirubin is considered one of the main antioxidant defense mechanisms playing pivotal roles in neuroprotection. Restoring the redox homeostasis is the goal of many natural or synthetic antioxidant molecules pursuing beneficial effects on brain functions. Here, we investigated the antioxidant capacity of four selected benzofuran-2-one derivatives in a cellular model of neurodegeneration represented by differentiated SH-SY5Y cells exposed to catechol-induced oxidative stress. Our main results highlight how all the molecules have antioxidant properties, especially compound 9, showing great abilities in reducing intracellular ROS levels and protecting differentiated SH-SY5Y cells from catechol-induced death. This compound above all seems to boost HO-1 mRNA and perinuclear HO-1 protein isoform expression when cells are exposed to the oxidative insult. Our findings open the way to consider benzofuran-2-ones as a novel and promising adjuvant antioxidant strategy for many neurodegenerative disorders.

4.
J Endocrinol Invest ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642306

RESUMO

BACKGROUND: CD20+ T cells represent up to 5% of circulating T lymphocytes. These cells have been shown to produce higher levels of IL-17A and IFN-γ than those of CD20- T lymphocytes. Some reports described the role of CD20+ T cells in autoimmune disorders such as multiple sclerosis and rheumatoid arthritis possibly due to their ability to produce these inflammatory cytokines. This study is aimed at describing the behavior of CD20+ T lymphocytes in the most frequent autoimmune disorder, i.e., Hashimoto's thyroiditis (HT), presenting isolated or associated to further autoaggressive disorders in a frame of poly-autoimmunity. METHODS: The study group encompasses 65 HT patients: 23 presenting in isolated form (IT) and 42 with an associated non-endocrine autoimmune disorder [16 with chronic atrophic gastritis (CAG), 15 with nonsegmental vitiligo (VIT), and 11 with celiac disease (CD)]. Twenty healthy donors act as control group (HD). Chronic use of interfering drugs, severe or chronic disorders, and pregnancy and lactation were used as exclusion criteria. Whole blood samples (100 µl) were stained with fluorescent-labeled antibodies (anti-CD45, anti-CD3, anti-CD19, anti-CD16, anti-CD56, anti-CD4, anti-CD8, anti-CD20). Red blood cells were then lysed by adding 1 ml of hypotonic buffer, and samples were acquired on a Flow Cytometer. RESULTS: CD3+CD8+CD20+ T lymphocytes' percentages, were significantly higher in the whole group of autoimmune patients compared to healthy donors (p = 0.0145). Dividing HT patients based on the type of presentation of autoimmune thyroiditis, CAG group showed the highest percentage of these cells as compared to HD and CD (p = 0.0058). IT patients showed higher percentages of CD3+ CD8+CD20+ cells than those of HD patients although not reaching statistical significance. However, dividing IT group based on thyroid function, hypothyroid patients showed higher CD8+CD20+ cell percentages than those of HD and euthyroid patients (p = 0.0111). Moreover, in IT patients, these cells were negatively correlated with FT4 levels (p = 0.0171; r = -0.4921). CONCLUSIONS: These preliminary findings indicate that CD8+CD20+ T cells are activated in patients with autoimmune thyroiditis and may behave differently according to the presence of poly-autoimmunity and hypothyroidism.

5.
Biomedicines ; 11(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37371814

RESUMO

Actinic keratosis (AK) is a carcinoma in situ precursor of cutaneous squamous cell carcinoma (cSCC), the second most common cancer affecting the Caucasian population. AK is frequently present in the sun-exposed skin of the elderly population, UV radiation being the main cause of this cancer, and other risk factors contributing to AK incidence. The dysregulation of microRNAs (miRNAs) observed in different cancers leads to an improper expression of miRNA targets involved in several cellular pathways. The TaqMan Array Human MicroRNA Card assay for miRNA expression profiling was performed in pooled AK compared to healthy skin scraping samples from the same patients. Forty-three miRNAs were modulated in the AK samples. The expression of miR-19b (p < 0.05), -31, -34a (p < 0.001), -126, -146a (p < 0.01), -193b, and -222 (p < 0.05) was validated by RT-qPCR. The MirPath tool was used for MiRNA target prediction and enriched pathways. The top DIANA-mirPath pathways regulated by the targets of the 43 miRNAs are TGF-beta signaling, Proteoglycans in cancer, Pathways in cancer, and Adherens junction (7.30 × 10-10 < p < 1.84 × 10-8). Selected genes regulating the KEGG pathways, i.e., TP53, MDM2, CDKN1A, CDK6, and CCND1, were analyzed. MiRNAs modulated in AK regulate different pathways involved in tumorigenesis, indicating miRNA regulation as a critical step in keratinocyte cancer.

6.
Curr Med Chem ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37032507

RESUMO

BACKGROUND: Low-dose-medicine is based on the administration of low doses of biological regulators to restore the immunologic balance altered in the disease. Cytokines are pivotal regulators of cellular and tissue functions and impaired crosstalk, due to an imbalance between specific cytokines, it is fundamental in acute inflammation and diseases correlated to low-grade chronic inflammation. Osteoarthritis is the most prevalent arthritic disease and a leading cause of disability. In the treatment of muscle-skeletal pathologies, the therapeutic integration of conventional medicine with homotoxicology, or low-dose-medicine appears to be beneficial. OBJECTIVE: This study aims to get more insights into the role of inflammatory cytokines and chemokines during the development of osteoarthritis and to evaluate a possible blocking strategy using anti-inflammatory molecules, we resort to an in vitro experimental model using an established human chondrosarcoma cell line that underwent to a well known pro-inflammatory stimulus as bacterial lipopolysaccharide. METHOD: We tested the production of inflammatory-related cytokines and chemokines, and the efficacy of low-dose (LD) administration of anti-inflammatory compounds, namely IL-10 and anti-IL-1, to block inflammatory cellular pathways. RESULTS: Following an inflammatory insult, chondrocytes upregulated the expression of several pro-inflammatory cyto-/chemokines and this induction could be counteracted by LD IL-10 and anti-IL-1. We reported that these effects could be ascribed to an interfering effect of LD drugs with the NF-κB signaling. CONCLUSION: Our results provided a good indication that LD drugs can be effective in inhibiting the inflammatory response in chondrocytes opening the way to new therapies for the treatment of diseases such as osteoarthritis.

7.
Infect Agent Cancer ; 17(1): 59, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457033

RESUMO

BACKGROUND: Actinic keratosis (AK) is a precursor of cutaneous squamous cell carcinoma (cSCC). UV radiation is the major risk factor for AK, but certain human papillomaviruses (HPVs) of the beta genus are also involved in its development. Differently, the role of polyomaviruses (PyVs) in skin carcinogenesis is still debated. Fiftheen PyVs have been isolated from human tissues so far, including Merkel cell polyomavirus (MCPyV), the aetiological agent of Merkel cell carcinoma. METHODS: The presence of 13 PyVs was assessed in skin samples from AK patients (n = 342). Matched fresh-frozen scrapings from healthy skin (HS) and AK lesions from 242 patients, and formalin-fixed paraffin-embedded AK biopsies from a different cohort of 100 patients were analyzed by multiplex PyVs genotyping assay. RESULTS: The most frequent lesion site was the scalp in men (27.3%), and the cheek area in women (29.0%). Differences between men and women were significant for the scalp, the cheek area and the lips. Almost all the scrapings were PyV-positive (HS: 89.7%, AK: 94.6%; p = 0.04). The three most frequent PyVs were MCPyV, HPyV6 and JCPyV (HS: 87.2%, 58.7%, 6.6%, respectively; AK: 88.8%, 51.2%, 9.9%, respectively). HPyV9, TSPyV, BKPyV, HPyV7, LIPyV and SV40 were detected in < 2% of the scrapings. In most cases, matched HS and AK scrapings were both positive (MCPyV: 78.1%, HPyV6: 41.7%), or both negative for the individual genotypes (for the remaining PyVs). PyV prevalence in AK biopsies was 22.0%. Only MCPyV (21.0%) and HPyV6 (3.0%) were detected in these samples. CONCLUSIONS: PyV prevalence in HS and AK scrapings was high, but detection of PyVs exclusively in AK scrapings was rare. PyV positivity rate in AK biopsies was modest. Further research is need to reach firm conclusions regarding the role of these viruses in AK development.

8.
J Inflamm Res ; 15: 5387-5399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147689

RESUMO

Purpose: Extracellular Vesicles (EVs) are a heterogeneous group of cell-derived membranous nanoparticles involved in several physiopathological processes. EVs play a crucial role in the definition of the extracellular microenvironment through the transfer of their cargo. Psoriasis is a prototypical chronic inflammatory disease characterized by several secreted mediators, among which antimicrobial peptides (AMPs) are considered pivotal in the development of the psoriatic inflammatory microenvironment. The role of EVs in the pathogenesis of psoriasis has not been elucidated yet, even if emerging evidence demonstrated that interleukin-17A (IL-17A), the psoriasis-related principal cytokine, modifies EVs release and cargo content. The aim of this work was to analyze whether, besides IL-17A, other psoriasis-related cytokines (ie, IFN-γ, TNF-α, IL-22 and IL-23) could affect EVs release and their AMPs mRNAs cargo as well as to analyze the potential biological effect due to EVs internalization by different acceptor cells. Methods: Nanoparticle tracking analysis (NTA) was performed on supernatants of HaCaT cells stimulated with IL-17A, IFN-γ, TNF-α, IL-22 or IL-23 to enumerate EVs. Real-Time RT-PCR was used for gene expression analysis in cells and EVs. Confocal microscopy and Flow cytometry were used to, respectively, study Netosis and EVs internalization. Results: IL-17A and IFN-γ increased EVs release by HaCaT cells. All the tested cytokines modulated AMPs mRNA expression in parental cells and in their respective EVs. S100A12 and hBD2 mRNAs were upregulated following IL-17A and IL-22 treatments. Interestingly, EVs derived from cytokine treated HaCaT cells induced Netosis in freshly isolated neutrophils. Upregulation of S100A12 and hBD2 mRNA was also detectable in acceptor cells incubated with EVs derived from cells treated with psoriasis-related cytokines. Conclusion: The obtained results highlighted the role of EVs in the composition of psoriasis-associated secretome and microenvironment also suggesting the EV involvement in the spreading of the disease mediators and in the possible associated comorbidities.

9.
Cell Prolif ; 55(11): e13312, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35946052

RESUMO

OBJECTIVES: Extracellular vesicles (EVs) are key biological mediators of several physiological functions within the cell microenvironment. Platelets are the most abundant source of EVs in the blood. Similarly, platelet lysate (PL), the best platelet derivative and angiogenic performer for regenerative purposes, is enriched of EVs, but their role is still too poorly discovered to be suitably exploited. Here, we explored the contribution of the EVs in PL, by investigating the angiogenic features extrapolated from that possessed by PL. METHODS: We tested angiogenic ability and molecular cargo in 3D bioprinted models and by RNA sequencing analysis of PL-derived EVs. RESULTS: A subset of small vesicles is highly represented in PL. The EVs do not retain aggregation ability, preserving a low redox state in human umbilical vein endothelial cells (HUVECs) and increasing the angiogenic tubularly-like structures in 3D endothelial bioprinted constructs. EVs resembled the miRNome profile of PL, mainly enriched with small RNAs and a high amount of miR-126, the most abundant angiogenic miRNA in platelets. The transfer of miR-126 by EVs in HUVEC after the in vitro inhibition of the endogenous form, restored angiogenesis, without involving VEGF as a downstream target in this system. CONCLUSION: PL is a biological source of available EVs with angiogenic effects involving a miRNAs-based cargo. These properties can be exploited for targeted molecular/biological manipulation of PL, by potentially developing a product exclusively manufactured of EVs.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Células Endoteliais da Veia Umbilical Humana , MicroRNAs/genética , Neovascularização Patológica , Plaquetas
10.
Front Immunol ; 13: 921260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874691

RESUMO

Systemic sclerosis (SSc) is a systemic autoimmune disease in which gastrointestinal disorders represent a complication in up to 90% of patients. SSc may associate with thyroid autoimmune disorders, with Hashimoto's thyroiditis (HT) being the more prevalent worldwide. Previous studies have examined the behavior of Th17 lymphocytes and Breg cells in patients with HT and concomitant autoimmune organ-specific disorders. These immune phenotypes seem to play a significant role in the pathogenesis of both these autoimmune processes, but their behavior when these two disorders coexist has not been described. We analyzed Th17 and Breg (CD24hiCD38hi) cell subsets in 50 subjects (45F/5M; median age = 49 years): 18 were healthy donors (HD), 20 had isolated HT, and 12 had SSc, seven of whom had both HT and SSc. Breg cells' function was also evaluated by measuring their IL-10 production when stimulated by specific activators. An increased percentage of Th17 lymphocytes characterized HT patients as compared to both HD and the whole group of SSc patients (p = 0.0018). On the contrary, the percentage of unstimulated Breg cells in SSc patients was higher (p = 0.0260), either associated or not with HT, as compared to both HT patients and HD, which, instead, showed a similar percentage of Breg cells. Following a specific stimulation with CpG, the percentages of Breg cells were increased in the whole sample of SSc patients (p < 0.001) as well as in isolated SSc and in SSc+HT ones as compared to isolated HT. However, qualitative analysis, obtained through the detection of the IL-10-producing phenotype, revealed that the percentage of CpG-stimulated CD24hiCD38hi-IL10+cells was significantly decreased in SSc patients (p < 0.0001) with no difference between isolated SSc and SSc+HT patients. The IL-10-producing phenotype was instead slightly increased in HT patients as compared to HD (4.1% vs. 2.8%). The presence of SSc seems to be characterized by an enrichment of total Breg cells but by a reduced Breg IL-10-producing phenotype, representing functional Bregs. This last finding was entirely due to the presence of SSc independently from the association with HT. This behavior is different from the ones described about the association of HT with organ-specific autoimmune disorders.


Assuntos
Doenças Autoimunes , Linfócitos B Reguladores , Doença de Hashimoto , Escleroderma Sistêmico , Doenças Autoimunes/patologia , Humanos , Interleucina-10
11.
Pathogens ; 11(6)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35745503

RESUMO

Mycobacterium bovis (M. bovis) is the causative agent of animal tuberculosis (bTB), infecting and causing disease in several animal species. In areas where there are complex interactions between reservoir hosts and susceptible species, the control of this pathogen is a challenge. The authors report two outbreaks of goat tuberculosis caused by M. bovis in multi-host ecosystems within two protected natural areas of Sicily, where TB is historically endemic. The first outbreak (Farm A) was identified after the incidental detection at the slaughterhouse of TB-like lesions in goat viscera ready to be disposed. Single intradermal cervical tuberculin test (SICT) was performed in Farm A on 205 goats, resulting positive in 10 (4.9%). After slaughtering, six out of ten animals showed TB-like lesions, from which M. bovis spoligotype SB0841 was isolated. The typing did not reveal any epidemiological connection with the neighboring cattle, suggesting that free-ranging type of management exposed the affected goat livestock or wildlife infected with other strains. The second outbreak (Farm B) was detected in a mixed farm (bovine, caprine, and ovine), where relapsing outbreaks of TB in cattle were registered in the previous years after performing the SICT in cohabiting goats. SICT resulted positive in 6/153 (3.9%), and two animals showed bTB-like lesions. No mycobacteria were cultured, and the final diagnosis of TB was achieved by histopathology and immunohistochemistry. The reported outbreaks highlight the importance of assessing the epidemiological, diagnostic, and regulatory critical issue, which is fundamental to optimizing the strategies of eradicating TB in the endemic multi-host ecosystem described.

12.
Infect Agent Cancer ; 17(1): 29, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705991

RESUMO

BACKGROUND: The ß3 human papillomavirus (HPV)49 induces immortalization of primary keratinocytes through the action of E6 and E7 oncoproteins with an efficiency similar to alpha high risk (HR)-HPV16. Since HR-HPV oncoproteins are known to alter microRNA (miRNA) expression and extracellular vesicle (EV) production, we investigated the impact of HPV49 E6 and E7 proteins on miRNA profile and EV expression, and their involvement in the control of cell proliferation. METHODS: The miRNA expression was evaluated by a miRNA array and validated by RT-qPCR in primary human keratinocytes immortalized by ß3 HPV49 (K49) or α9 HR-HPV16 (K16), and in EVs from K49 and K16. The modulation of miRNA target proteins was investigated by immunoblotting analyses. RESULTS: By comparing miRNA expression in K49 and K16 and the derived EVs, six miRNAs involved in HPV tumorigenesis were selected and validated. MiR-19a and -99a were found to be upregulated and miR-34a downregulated in both cell lines; miR-17 and -590-5p were upregulated in K49 and downmodulated in K16; miR-21 was downregulated only in K16. As for EV-carried miRNAs, the expression of miR-17, -19a, -21 and -99a was decreased and miR-34a was increased in K49 EVs. In K16 EVs, we revealed the same modulation of miR-19a, -34a, and -99a observed in producing cells, while miR-21 was upregulated. Cyclin D1, a common target of the selected miRNAs, was downmodulated in both cell lines, whereas cyclin-dependent kinase 4 was down-modulated in K49 but upregulated in K16. CONCLUSION: These data suggest that E6 and E7 proteins of ß3 HPV49 and α9 HR-HPV16 affect key factors of cell cycle control by indirect mechanisms based on miRNA modulation.

13.
Biology (Basel) ; 10(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34681093

RESUMO

Oncogenic viruses favor the development of tumors in mammals by persistent infection and specific cellular pathways modifications by deregulating cell proliferation and inhibiting apoptosis. They counteract the cellular antiviral defense through viral proteins as well as specific cellular effectors involved in virus-induced tumorigenesis. Type I interferons (IFNs) are a family of cytokines critical not only for viral interference but also for their broad range of properties that go beyond the antiviral action. In fact, they can inhibit cell proliferation and modulate differentiation, apoptosis, and migration. However, their principal role is to regulate the development and activity of most effector cells of the innate and adaptive immune responses. Various are the mechanisms by which IFNs exert their effects on immune cells. They can act directly, through IFN receptor triggering, or indirectly by the induction of chemokines, the secretion of further cytokines, or by the stimulation of cells useful for the activation of particular immune cells. All the properties of IFNs are crucial in the host defense against viruses and bacteria, as well as in the immune surveillance against tumors. IFNs may be affected by and, in turn, affect signaling pathways to mediate anti-proliferative and antiviral responses in virus-induced tumorigenic context. New data on cellular and viral microRNAs (miRNAs) machinery, as well as cellular communication and microenvironment modification via classical secretion mechanisms and extracellular vesicles-mediated delivery are reported. Recent research is reviewed on the tumorigenesis induced by specific viruses with RNA or DNA genome, belonging to different families (i.e., HPV, HTLV-1, MCPyV, JCPyV, Herpesviruses, HBV, HCV) and the IFN system involvement.

14.
Cancers (Basel) ; 12(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003483

RESUMO

This systematic review investigated the literature on acquired v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor resistance in patients with melanoma. We searched MEDLINE for articles on BRAF inhibitor resistance in patients with melanoma published since January 2010 in the following areas: (1) genetic basis of resistance; (2) epigenetic and transcriptomic mechanisms; (3) influence of the immune system on resistance development; and (4) combination therapy to overcome resistance. Common resistance mutations in melanoma are BRAF splice variants, BRAF amplification, neuroblastoma RAS viral oncogene homolog (NRAS) mutations and mitogen-activated protein kinase kinase 1/2 (MEK1/2) mutations. Genetic and epigenetic changes reactivate previously blocked mitogen-activated protein kinase (MAPK) pathways, activate alternative signaling pathways, and cause epithelial-to-mesenchymal transition. Once BRAF inhibitor resistance develops, the tumor microenvironment reverts to a low immunogenic state secondary to the induction of programmed cell death ligand-1. Combining a BRAF inhibitor with a MEK inhibitor delays resistance development and increases duration of response. Multiple other combinations based on known mechanisms of resistance are being investigated. BRAF inhibitor-resistant cells develop a range of 'escape routes', so multiple different treatment targets will probably be required to overcome resistance. In the future, it may be possible to personalize combination therapy towards the specific resistance pathway in individual patients.

15.
Cytokine ; 136: 155253, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32858439

RESUMO

OBJECTIVE: To assess the role of CD3+ CD20+ CD4- CD8- double-negative (DN) or CD3+CD20+ CD4/CD8+ T cells and the related pro-inflammatory cytokines in the humor aqueous, in mediating retinal microvascular changes in patients with chronic plaque-type moderate to severe psoriasis. DESIGN: A total of 76 patients (57.6 ± 11.7 years) with chronic plaque-type psoriasis were initially evaluated. Nineteen patients (19 eyes) and 19 healthy volunteers (19 eyes) were subjected to dermatological evaluation with Psoriasis Area Severity Index (PASI) and the Dermatology life quality index (DLQI). Retinal images were processed using an automatized software. On the same day, a venous sample was collected and analyzed using multiparametric flow cytometry. Three out of 6 patients who presented cataract, consented to perform surgery with humor aqueous collection. The samples were analyzed using a Multi-Analyte ELISA kit for the simultaneous quantification of IL1α, IL1ß, IL2, IL4, IL6, IL8, IL10, IL12, IL17A, IFNγ, TNF-α, GMCSF. RESULTS: The CD3+CD4+/CD8+CD20+CD56- T cells expression was greater in the psoriatic patients (+73.9%, P < 0.001) compared to controls, but not the DN T cells (-8.2%, P = 0.30). Ocular complications were diagnosed in 61.1% of patients, microvascular parameters including artero-venous ratio (P = 0.04), subfoveal choriocapillaris/Sattler's layer, and choroidal thickness (CT, both P < 0.001) were significantly altered in psoriasis subgroup. The increased circulating levels of the CD3+CD4+/CD8+CD20+CD56- T cells were associated with thinning of subfoveal CT (P = 0.03) and Haller's layer (P = 0.01). Instead, the DN T cells presented an inverse relationship with disease duration (P = 0.02), DLQI score (P = 0.02), and the use of biological therapy (P = 0.05). The related cytokine patterns possibly modified in this cellular context have been investigated. No significant differences were observed in cytokines levels between psoriasis and controls, the most significant difference was detected on IL-6, without reaching statistical significance (fold change of 1.4, P = 0.13). CONCLUSION: Our findings demonstrated that CD20+ T cell subpopulation is highly represented in psoriasis regardless of the use of immunomodulatory therapies, and the diffuse microvascular alterations suggested possible endothelial damage as mainstream for the genesis of psoriatic-mediated complications as further supported by the comparable concentrations of cytokines, at least as humor aqueous content, with respect to healthy eyes.


Assuntos
Antígenos CD20/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Oftalmopatias/imunologia , Psoríase/imunologia , Vasos Retinianos/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Doença Crônica , Oftalmopatias/etiologia , Oftalmopatias/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Psoríase/complicações , Psoríase/patologia , Vasos Retinianos/patologia
16.
Cancers (Basel) ; 12(7)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645969

RESUMO

The BRAF inhibitors vemurafenib, dabrafenib and encorafenib are used in the treatment of patients with BRAF-mutant melanoma. They selectively target BRAF kinase and thus interfere with the mitogen-activated protein kinase (MAPK) signalling pathway that regulates the proliferation and survival of melanoma cells. In addition to their molecularly targeted activity, BRAF inhibitors have immunomodulatory effects. The MAPK pathway is involved in T-cell receptor signalling, and interference in the pathway by BRAF inhibitors has beneficial effects on the tumour microenvironment and anti-tumour immune response in BRAF-mutant melanoma, including increased immune-stimulatory cytokine levels, decreased immunosuppressive cytokine levels, enhanced melanoma differentiation antigen expression and presentation of tumour antigens by HLA 1, and increased intra-tumoral T-cell infiltration and activity. These effects promote recognition of the tumour by the immune system and enhance anti-tumour T-cell responses. Combining BRAF inhibitors with MEK inhibitors provides more complete blockade of the MAPK pathway. The immunomodulatory effects of BRAF inhibition alone or in combination with MEK inhibition provide a rationale for combining these targeted therapies with immune checkpoint inhibitors. Available data support the synergy between these treatment approaches, indicating such combinations provide an additional beneficial effect on the tumour microenvironment and immune response in BRAF-mutant melanoma.

20.
Cytokine Growth Factor Rev ; 51: 92-98, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31973992

RESUMO

A small group of mucosal Human Papillomaviruses are the causative agents of cervical cancer and are also associated with other types of cancers. Certain cutaneous Human Papillomaviruses seem to have a role as co-factors in the UV-induced carcinogenesis of the skin. The main mechanism of the tumorigenesis induced by Human Papillomaviruses is linked to the transforming activity of the viral E6 and E7 oncoproteins. However, other mechanisms, such as the gene expression control by specific microRNAs expression and deregulation of immune inflammatory mediators, may be important in the process of transformation. In this context, the release of Extracellular Vesicles with a specific cargo (microRNAs involved in tumorigenesis, mRNAs of viral oncoproteins, cytokines, chemokines) appears to play a key role.


Assuntos
Alphapapillomavirus/patogenicidade , Carcinogênese/patologia , Comunicação Celular , Vesículas Extracelulares/fisiologia , Infecções por Papillomavirus/complicações , Carcinoma de Células Escamosas/virologia , Vesículas Extracelulares/patologia , Feminino , Humanos , MicroRNAs , RNA Mensageiro , Pele/patologia , Pele/virologia , Neoplasias do Colo do Útero/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...