Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 435(24): 168320, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37865287

RESUMO

Light chain amyloidosis (AL) is a systemic disease where fibrillar deposition of misfolded immunoglobulin light chains (LCs) severely affects organ function and results in poor prognosis for patients, especially when heart involvement is severe. Particularly relevant in this context is the cardiotoxicity exerted by still uncharacterized soluble LC species. Here, with the final goal of identifying alternative therapeutic strategies to tackle AL amyloidosis, we produced five llama-derived nanobodies (Nbs) specific against H3, a well-characterized amyloidogenic and cardiotoxic LC from an AL patient with severe cardiac involvement. We found that Nbs are specific and potent agents capable of abolishing H3 soluble toxicity in C. elegans in vivo model. Structural characterization of H3-Nb complexes revealed that the protective effect of Nbs is related to their ability to bind to the H3 VL domain and stabilise an unexpected partially open LC dimer in which the two VL domains no longer interact with each other. Thus, while identifying potent inhibitors of LC soluble toxicity, we also describe the first non-native structure of an amyloidogenic LC that may represent a crucial step in toxicity and aggregation mechanisms.


Assuntos
Amiloide , Cadeias Leves de Imunoglobulina , Amiloidose de Cadeia Leve de Imunoglobulina , Anticorpos de Domínio Único , Animais , Humanos , Amiloide/imunologia , Caenorhabditis elegans , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/imunologia , Cadeias Leves de Imunoglobulina/uso terapêutico , Miócitos Cardíacos/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/uso terapêutico , Amiloidose de Cadeia Leve de Imunoglobulina/imunologia , Amiloidose de Cadeia Leve de Imunoglobulina/terapia
2.
Antioxidants (Basel) ; 11(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453298

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose activity can be modulated by polyphenols, such as curcumin. AhR and curcumin have evolutionarily conserved effects on aging. Here, we investigated whether and how the AhR mediates the anti-aging effects of curcumin across species. Using a combination of in vivo, in vitro, and in silico analyses, we demonstrated that curcumin has AhR-dependent or -independent effects in a context-specific manner. We found that in Caenorhabditis elegans, AhR mediates curcumin-induced lifespan extension, most likely through a ligand-independent inhibitory mechanism related to its antioxidant activity. Curcumin also showed AhR-independent anti-aging activities, such as protection against aggregation-prone proteins and oxidative stress in C. elegans and promotion of the migratory capacity of human primary endothelial cells. These AhR-independent effects are largely mediated by the Nrf2/SKN-1 pathway.

3.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055136

RESUMO

Light chain amyloidosis (AL) is caused by the aberrant overproduction of immunoglobulin light chains (LCs). The resulting abnormally high LC concentrations in blood lead to deposit formation in the heart and other target organs. Organ damage is caused not only by the accumulation of bulky amyloid deposits, but extensive clinical data indicate that circulating soluble LCs also exert cardiotoxic effects. The nematode C. elegans has been validated to recapitulate LC soluble toxicity in vivo, and in such a model a role for copper ions in increasing LC soluble toxicity has been reported. Here, we applied microscale thermophoresis, isothermal calorimetry and thermal melting to demonstrate the specific binding of Cu2+ to the variable domain of amyloidogenic H7 with a sub-micromolar affinity. Histidine residues present in the LC sequence are not involved in the binding, and yet their mutation to Ala reduces the soluble toxicity of H7. Copper ions bind to and destabilize the variable domains and induce a limited stabilization in this domain. In summary, the data reported here, elucidate the biochemical bases of the Cu2+-induced toxicity; moreover, they also show that copper binding is just one of the several biochemical traits contributing to LC soluble in vivo toxicity.


Assuntos
Cobre/metabolismo , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Substituição de Aminoácidos , Animais , Caenorhabditis elegans , Calorimetria , Modelos Animais de Doenças , Histidina/metabolismo , Humanos , Cadeias Leves de Imunoglobulina/toxicidade , Modelos Moleculares , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo
4.
FEBS J ; 289(7): 1929-1949, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34743390

RESUMO

Emerging experimental evidence suggests tau pathology spreads between neuroanatomically connected brain regions in a prion-like manner in Alzheimer's disease (AD). Tau seeding, the ability of prion-like tau to recruit and misfold naïve tau to generate new seeds, is detected early in human AD brains before the development of major tau pathology. Many antitumour drugs have been reported to confer protection against neurodegeneration, supporting the repurposing of approved and experimental or investigational oncology drugs for AD therapy. In this study, we evaluated whether antitumour drugs that abrogate the generation of seed-competent aggregates of tau Repeat 3 (R3) domain peptides can prevent tau seeding and toxicity in Tau-RD P301S FRET Biosensor cells and Caenorhabditis elegans. We demonstrate that drugs that interact with the N-terminal VQIVYK or the C-terminal region housing the Cys322 prevent R3 dimerisation, abolishing the generation of prion-like R3 seeds. Preformed R3 seeds (fibrils) capped with, or R3 seeds formed in the presence of VQIVYK- or Cys322-targeting drugs have a reduced potency to cause aggregation of naïve tau in biosensor cells and protect worms from aggregate toxicity. These findings indicate that VQIVYK- or Cys322-targeting drugs may act as prophylactic agents against tau seeding.


Assuntos
Doença de Alzheimer , Antineoplásicos , Príons , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Antineoplásicos/farmacologia , Encéfalo/metabolismo , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Nat Commun ; 12(1): 3532, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112780

RESUMO

In systemic light chain amyloidosis (AL), pathogenic monoclonal immunoglobulin light chains (LC) form toxic aggregates and amyloid fibrils in target organs. Prompt diagnosis is crucial to avoid permanent organ damage, but delayed diagnosis is common because symptoms usually appear only after strong organ involvement. Here we present LICTOR, a machine learning approach predicting LC toxicity in AL, based on the distribution of somatic mutations acquired during clonal selection. LICTOR achieves a specificity and a sensitivity of 0.82 and 0.76, respectively, with an area under the receiver operating characteristic curve (AUC) of 0.87. Tested on an independent set of 12 LCs sequences with known clinical phenotypes, LICTOR achieves a prediction accuracy of 83%. Furthermore, we are able to abolish the toxic phenotype of an LC by in silico reverting two germline-specific somatic mutations identified by LICTOR, and by experimentally assessing the loss of in vivo toxicity in a Caenorhabditis elegans model. Therefore, LICTOR represents a promising strategy for AL diagnosis and reducing high mortality rates in AL.


Assuntos
Caenorhabditis elegans/metabolismo , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/toxicidade , Amiloidose de Cadeia Leve de Imunoglobulina/diagnóstico , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Aprendizado de Máquina , Algoritmos , Sequência de Aminoácidos , Animais , Anticorpos/genética , Caenorhabditis elegans/genética , Bases de Dados Genéticas , Expressão Gênica , Humanos , Cadeias Leves de Imunoglobulina/química , Modelos Moleculares , Mutação , Proteínas Recombinantes
6.
Antioxidants (Basel) ; 10(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801467

RESUMO

Prunus spinosa L. fruit (PSF) ethanol extract, showing a peculiar content of biologically active molecules (polyphenols), was investigated for its wound healing capacity, a typical feature that declines during aging and is negatively affected by the persistence of inflammation and oxidative stress. To this aim, first, PSF anti-inflammatory properties were tested on young and senescent LPS-treated human umbilical vein endothelial cells (HUVECs). As a result, PSF treatment increased miR-146a and decreased IRAK-1 and IL-6 expression levels. In addition, the PSF antioxidant effect was validated in vitro with DPPH assay and confirmed by in vivo treatments in C. elegans. Our findings showed beneficial effects on worms' lifespan and healthspan with positive outcomes on longevity markers (i.e., miR-124 upregulation and miR-39 downregulation) as well. The PSF effect on wound healing was tested using the same cells and experimental conditions employed to investigate PSF antioxidant and anti-inflammaging ability. PSF treatment resulted in a significant improvement of wound healing closure (ca. 70%), through cell migration, both in young and older cells, associated to a downregulation of inflammation markers. In conclusion, PSF extract antioxidant and anti-inflammaging abilities result in improved wound healing capacity, thus suggesting that PSF might be helpful to improve the quality of life for its beneficial health effects.

7.
Neurobiol Dis ; 153: 105330, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33711491

RESUMO

Traumatic brain injury (TBI) is associated with widespread tau pathology in about 30% of patients surviving late after injury. We previously found that TBI in mice induces the formation of an abnormal form of tau (tauTBI) which progressively spreads from the site of injury to remote brain regions. Intracerebral inoculation of TBI brain homogenates into naïve mice induced progressive tau pathology, synaptic loss and late cognitive decline, suggesting a pivotal role of tauTBI in post-TBI neurodegeneration. However, the possibility that tauTBI was a marker of TBI-associated neurodegeneration rather than a toxic driver of functional decline could not be excluded. Here we employed the nematode C. elegans as a biosensor to test the pathogenic role of TBI generated tau. The motility of this nematode depends on efficient neuromuscular transmission and is exceptionally sensitive to the toxicity of amyloidogenic proteins, providing a tractable model for our tests. We found that worms exposed to brain homogenates from chronic but not acute TBI mice, or from mice in which tauTBI had been transmitted by intracerebral inoculation, had impaired motility and neuromuscular synaptic transmission. Results were similar when worms were given brain homogenates from transgenic mice overexpressing tau P301L, a tauopathy mouse model, suggesting that TBI-induced and mutant tau have similar toxic properties. P301L brain homogenate toxicity was similar in wild-type and ptl-1 knock-out worms, indicating that the nematode tau homolog protein PTL-1 was not required to mediate the toxic effect. Harsh protease digestion to eliminate the protein component of the homogenates, pre-incubation with anti-tau antibodies or tau depletion by immunoprecipitation, abolished the toxicity. Homogenates of chronic TBI brains from tau knock-out mice were not toxic to C. elegans, whereas oligomeric recombinant tau was sufficient to impair their motility. This study indicates that tauTBI impairs motor activity and synaptic transmission in C. elegans and supports a pathogenic role of tauTBI in the long-term consequences of TBI. It also sets the groundwork for the development of a C. elegans-based platform for screening anti-tau compounds.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Caenorhabditis elegans , Atividade Motora/fisiologia , Doenças Neurodegenerativas/metabolismo , Junção Neuromuscular/metabolismo , Proteínas tau/metabolismo , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Camundongos , Doenças Neurodegenerativas/fisiopatologia , Junção Neuromuscular/fisiopatologia , Tauopatias/metabolismo , Tauopatias/fisiopatologia
8.
Sci Total Environ ; 708: 135134, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31796277

RESUMO

Organic-inorganic perovskite solar cells (PSCs) are promising candidates as photovoltaic cells. Recently, they have attracted significant attention due to certified power conversion efficiencies exceeding 23%, low-cost engineering, and superior electrical/optical characteristics. These PSCs extensively utilize a perovskite-structured composite with a hybrid of Pb-based nanomaterials. Operation of them may cause the release of Pb-based nanoparticles. However, limited information is available regarding the potential toxicity of Pb-based PSCs on various organisms. This study conducted a battery of in vitro and in vivo toxicity bioassays for three quintessential Pb-based PSCs (CH3NH3PbI3, NHCHNH3PbBr3, and CH3NH3PbBr3) using progressively more complex forms of life. For all species tested, the three different perovskites had comparable toxicities. The viability of Caco-2/TC7 cells was lower than that of A549 cells in response to Pb-based PSC exposure. Concentration-dependent toxicity was observed for the bioluminescent bacterium Vibrio fischeri, for soil bacterial communities, and for the nematode Caenorhabditis elegans. Neither of the tested Pb-based PSCs particles had apparent toxicity to Pseudomonas putida. Among all tested organisms, V. fischeri showed the highest sensitivity with EC50 values (30 min of exposure) ranging from 1.45 to 2.91 mg L-1. Therefore, this study recommends that V. fischeri should be preferably utilized to assess. PSC toxicity due to its increased sensitivity, low costs, and relatively high throughput in a 96-well format, compared with the other tested organisms. These results highlight that the developed assay can easily predict the toxic potency of PSCs. Consequently, this approach has the potential to promote the implementation of the 3Rs (Replacement, Reduction, and Refinement) principle in toxicology and decrease the dependence on animal testing when determining the safety of novel PSCs.

9.
J Mol Biol ; 432(4): 845-860, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31874151

RESUMO

In light chain amyloidosis (AL), fibrillar deposition of monoclonal immunoglobulin light chains (LCs) in vital organs, such as heart, is associated with their severe dysfunction. In addition to the cellular damage caused by fibril deposition, direct toxicity of soluble prefibrillar amyloidogenic proteins has been reported, in particular, for cardiotoxicity. However, the molecular bases of proteotoxicity by soluble LCs have not been clarified. Here, to address this issue, we rationally engineered the amino acid sequence of the highly cardiotoxic LC H6 by introducing three residue mutations, designed to reduce the dynamics of its native state. The resulting mutant (mH6) is less toxic than its parent H6 to human cardiac fibroblasts and C. elegans. The high sequence and structural similarity, together with the different toxicity, make H6 and its non-toxic designed variant mH6 a test case to shed light on the molecular properties underlying soluble toxicity. Our comparative structural and biochemical study of H6 and mH6 shows closely matching crystal structures, whereas spectroscopic data and limited proteolysis indicate that H6 displays poorly cooperative fold, higher flexibility, and kinetic instability, and a higher dynamic state in its native fold. Taken together, the results of this study show a strong correlation between the overall conformational properties of the native fold and the proteotoxicity of cardiotropic LCs.


Assuntos
Amiloide/metabolismo , Amiloidose/metabolismo , Biofísica/métodos , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Amiloide/química , Amiloide/genética , Amiloidose/genética , Animais , Humanos , Cadeias Leves de Imunoglobulina/genética , Mutação/genética , Dobramento de Proteína
11.
Biochim Biophys Acta Gen Subj ; 1863(2): 279-290, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30420336

RESUMO

BACKGROUND: We have previously demonstrated the neuroprotective activity of tetracycline on a Spinocerebellar Ataxia 3 nematode model. Here, we present the screening of a small library of tetracycline congeners in order to identify the most effective compound in preventing ataxin-3 aggregation. METHODS: We performed the assays on the Josephin Domain as it is directly involved in the onset of fibrillation. We used thioflavin T and solubility assays to spot out the most effective tetracycline congeners; Fourier transform infrared and NMR spectroscopies to characterize their mode of action. We employed an ataxic Caenorhabditis elegans model to evaluate the pharmacological efficacy of tetracycline congeners. RESULTS: Methacycline was identified as the most effective compound. Like tetracycline, methacycline neither significantly affected the aggregation kinetics nor did it change the secondary structures of the final aggregates but increased the solubility of the aggregated species. Saturation transfer NMR experiments demonstrated methacycline capability to only bind the oligomeric species of Josephin Domain. Competition assays also showed that methacycline binds to the Josephin Domain more tightly than tetracycline. The treatment with methacycline induced a significant improvement in motility and locomotion of the transgenic C. elegans without changing its lifespan. The efficacy was distinctly stronger than that of tetracycline. Noteworthy, unlike tetracycline, methacycline was able to retard aging-related decline in motility of even the healthy worms used. CONCLUSIONS: The apparent absence of toxic effects displayed by methacycline, along with its stronger efficacy in contrasting expanded ataxin-3 toxicity, makes it a possible candidate for a chronic treatment of the disease.


Assuntos
Antibacterianos/farmacologia , Ataxina-3/antagonistas & inibidores , Caenorhabditis elegans/efeitos dos fármacos , Metaciclina/farmacologia , Modelos Biológicos , Animais , Ataxina-3/metabolismo , Caenorhabditis elegans/metabolismo , Cinética , Agregados Proteicos/efeitos dos fármacos , Estrutura Secundária de Proteína
12.
Planta Med ; 84(16): 1151-1164, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29925102

RESUMO

Magnolia officinalis and Magnolia obovata bark extracts have been used for thousands of years in Chinese and Japanese traditional medicines and are still widely employed as herbal preparations for their sedative, antioxidant, anti-inflammatory, antibiotic, and antispastic effects. Neolignans, particularly magnolol and honokiol, are the main substances responsible for the beneficial properties of the magnolia bark extract (MBE). The content of magnolol and honokiol in MBE depends on different factors, including the Magnolia plant species, the area of origin, the part of the plant employed, and the method used to prepare the extract. The biological and pharmacological activities of magnolol and honokiol have been extensively investigated. Here we review the safety and toxicological properties of magnolol and honokiol as pure substances or as components of concentrated MBE, including the potential side-effects in humans after oral intake. In vitro and in vivo genotoxicity studies indicated that concentrated MBE has no mutagenic and genotoxic potential, while a subchronic study performed according to OECD (Organisation for Economic Co-operation and Development) guidelines established a no adverse effect level for concentrated MBE > 240 mg/kg b.w/d. Similar to other dietary polyphenols, magnolol and honokiol are subject to glucuronidation, and despite a relatively quick clearance, an interaction with pharmaceutical active principles or other herbal constituents cannot be excluded. However, intervention trials employing concentrated MBE for up to 1 y did not report adverse effects. In conclusion, over the recent years different food safety authorities evaluated magnolol and honokiol and considered them safe.


Assuntos
Compostos de Bifenilo/efeitos adversos , Compostos de Bifenilo/farmacocinética , Compostos de Bifenilo/toxicidade , Lignanas/efeitos adversos , Lignanas/farmacocinética , Lignanas/toxicidade , Animais , Compostos de Bifenilo/análise , Interações Medicamentosas , Humanos , Lignanas/análise , Magnolia/química , Testes de Mutagenicidade , Extratos Vegetais/química , Distribuição Tecidual
13.
Neurobiol Dis ; 117: 226-234, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29936232

RESUMO

Mutations in the microtubule-associated protein tau (MAPT) gene have been linked to a heterogeneous group of progressive neurodegenerative disorders commonly called tauopathies. From patients with frontotemporal lobar degeneration with distinct atypical clinical phenotypes, we recently identified two new mutations on the same codon, in position 363 of the MAPT gene, which resulted in the production of Val-to-Ala (tauV363A) or Val-to-Ile (tauV363I) mutated tau. These substitutions specifically affected microtubule polymerization and propensity of tau to aggregate in vitro suggesting that single amino acid modification may dictate the fate of the neuropathology. To clarify whether tauV363A and tauV363I affect protein misfolding differently in vivo driving certain phenotypes, we generated new transgenic C. elegans strains. Human 2N4R tau carrying the mutation was expressed in all the neurons of worms. The behavioral defects, misfolding and proteotoxicity caused by the tauV363A and tauV363I mutated proteins were compared to that induced by the expression of wild-type tau (tauwt). Pan-neuronal expression of human 2N4R tauWT in worms resulted in a neuromuscular defect with characteristics of a neurodegenerative phenotype. This defect was worsened by the expression of mutated proteins which drive distinct neuronal dysfunctions and synaptic impairments involving, in transgenic worms expressing tauV363A (V363A) also a pharyngeal defect never linked before to other mutations. The two mutations differently affected the tau phosphorylation and misfolding propensities: tauV363I was highly phosphorylated on epitopes corresponding to Thr231 and Ser202/Thr205, and accumulated as insoluble tau assemblies whereas tauV363A showed a greater propensity to form soluble oligomeric assemblies. These findings uphold the role of a single amino acid substitution in specifically affecting the ability of tau to form soluble and insoluble assemblies, opening up new perspectives in the pathogenic mechanism underlying tauopathies.


Assuntos
Proteínas de Caenorhabditis elegans/biossíntese , Degeneração Neural/metabolismo , Agregados Proteicos/fisiologia , Tauopatias/metabolismo , Proteínas tau/biossíntese , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Humanos , Degeneração Neural/genética , Degeneração Neural/patologia , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética
14.
Sci Rep ; 7(1): 10313, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871125

RESUMO

Human immunodeficiency virus type-1 (HIV-1)-associated neurocognitive disorder (HAND) remains an important neurological manifestation that adversely affects a patient's quality of life. HIV-1 matrix protein p17 (p17) has been detected in autoptic brain tissue of HAND individuals who presented early with severe AIDS encephalopathy. We hypothesised that the ability of p17 to misfold may result in the generation of toxic assemblies in the brain and may be relevant for HAND pathogenesis. A multidisciplinary integrated approach has been applied to determine the ability of p17 to form soluble amyloidogenic assemblies in vitro. To provide new information into the potential pathogenic role of soluble p17 species in HAND, their toxicological capability was evaluated in vivo. In C. elegans, capable of recognising toxic assemblies of amyloidogenic proteins, p17 induces a specific toxic effect which can be counteracted by tetracyclines, drugs able to hinder the formation of large oligomers and consequently amyloid fibrils. The intrahippocampal injection of p17 in mice reduces their cognitive function and induces behavioral deficiencies. These findings offer a new way of thinking about the possible cause of neurodegeneration in HIV-1-seropositive patients, which engages the ability of p17 to form soluble toxic assemblies.


Assuntos
Antígenos HIV/química , Antígenos HIV/metabolismo , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Análise de Variância , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Caenorhabditis elegans , Epitopos/imunologia , Antígenos HIV/imunologia , Humanos , Imuno-Histoquímica , Camundongos , Microscopia de Força Atômica , Transtornos Neurocognitivos/patologia , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
15.
ACS Chem Neurosci ; 8(8): 1767-1778, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28562008

RESUMO

The self-assembling of the amyloid ß (Aß) peptide into neurotoxic aggregates is considered a central event in the pathogenesis of Alzheimer's disease (AD). Based on the "amyloid hypothesis", many efforts have been devoted to designing molecules able to halt disease progression by inhibiting Aß self-assembly. Here, we combine biophysical (ThT assays, TEM and AFM imaging), biochemical (WB and ESI-MS), and computational (all-atom molecular dynamics) techniques to investigate the capacity of four optically pure components of the natural product silymarin (silybin A, silybin B, 2,3-dehydrosilybin A, 2,3-dehydrosilybin B) to inhibit Aß aggregation. Despite TEM analysis demonstrated that all the four investigated flavonoids prevent the formation of mature fibrils, ThT assays, WB and AFM investigations showed that only silybin B was able to halt the growth of small-sized protofibrils thus promoting the formation of large, amorphous aggregates. Molecular dynamics (MD) simulations indicated that silybin B interacts mainly with the C-terminal hydrophobic segment 35MVGGVV40 of Aß40. Consequently to silybin B binding, the peptide conformation remains predominantly unstructured along all the simulations. By contrast, silybin A interacts preferentially with the segments 17LVFF20 and 27NKGAII32 of Aß40 which shows a high tendency to form bend, turn, and ß-sheet conformation in and around these two domains. Both 2,3-dehydrosilybin enantiomers bind preferentially the segment 17LVFF20 but lead to the formation of different small-sized, ThT-positive Aß aggregates. Finally, in vivo studies in a transgenic Caenorhabditis elegans strain expressing human Aß indicated that silybin B is the most effective of the four compounds in counteracting Aß proteotoxicity. This study underscores the pivotal role of stereochemistry in determining the neuroprotective potential of silybins and points to silybin B as a promising lead compound for further development in anti-AD therapeutics.


Assuntos
Peptídeos beta-Amiloides/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/efeitos dos fármacos , Silimarina/farmacologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Animais Geneticamente Modificados , Western Blotting , Caenorhabditis elegans , Relação Dose-Resposta a Droga , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Estrutura Molecular , Fármacos Neuroprotetores/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Agregação Patológica de Proteínas/tratamento farmacológico , Conformação Proteica , Silibina , Silimarina/química
16.
J Alzheimers Dis ; 57(3): 857-871, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28282805

RESUMO

The 24-residue peptide humanin (HN) has been proposed as a peptide-based inhibitor able to interact directly with amyloid-ß (Aß) oligomers and interfere with the formation and/or biological properties of toxic Aß species. When administered exogenously, HN, or its synthetic S14G-derivative (HNG), exerted multiple cytoprotective effects, counteracting the Aß-induced toxicity. Whether these peptides interact directly with Aß, particularly with the soluble oligomeric assemblies, remains largely unknown. We here investigated the ability of HN and HNG to interact directly with highly aggregating Aß42, and interfere with the formation and toxicity of its oligomers. Experiments were run in cell-free conditions and in vivo in a transgenic C. elegans strain in which the Aß toxicity was specifically due to oligomeric species. Thioflavin-T assay indicated that both HN and HNG delay the formation and reduce the final amount of Aß42 fibrils. In vitro surface plasmon resonance studies indicated that they interact with Aß42 oligomers favoring the formation of amorphous larger assemblies, observed with turbidity and electron microscopy. In vivo studies indicated that both HN and HNG decrease the relative abundance of A11-positive prefibrillar oligomers as well as OC-positive fibrillar oligomers and had similar protective effects. However, while HN possibly decreased the oligomers by promoting their assembly into larger aggregates, the reduction of oligomers caused by HNG can be ascribed to a marked decrease of the total Aß levels, likely the consequence of the HNG-induced overexpression of the Aß-degrading enzyme neprilysin. These findings provide information on the mechanisms underlying the anti-oligomeric effects of HN and HNG and illustrate the role of S14G substitution in regulating the in vivo mechanism of action.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Regulação da Expressão Gênica/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico , Paralisia/induzido quimicamente , Paralisia/tratamento farmacológico , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dicroísmo Circular/métodos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Neprilisina/genética , Neprilisina/metabolismo , Paralisia/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/ultraestrutura , Ressonância de Plasmônio de Superfície
17.
Antioxid Redox Signal ; 27(9): 567-582, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28132512

RESUMO

AIMS: The knowledge of the mechanism underlying the cardiac damage in immunoglobulin light chain (LC) amyloidosis (AL) is essential to develop novel therapies and improve patients' outcome. Although an active role of reactive oxygen species (ROS) in LC-induced cardiotoxicity has already been envisaged, the actual mechanisms behind their generation remain elusive. This study was aimed at further dissecting the action of ROS generated by cardiotoxic LC in vivo and investigating whether transition metal ions are involved in this process. In the absence of reliable vertebrate model of AL, we used the nematode Caenorhabditis elegans, whose pharynx is an "ancestral heart." RESULTS: LC purified from patients with severe cardiac involvement intrinsically generated high levels of ROS and when administered to C. elegans induced ROS production, activation of the DAF-16/forkhead transcription factor (FOXO) pathway, and expression of proteins involved in stress resistance and survival. Profound functional and structural ROS-mediated mitochondrial damage, similar to that observed in amyloid-affected hearts from AL patients, was observed. All these effects were entirely dependent on the presence of metal ions since addition of metal chelator or metal-binding 8-hydroxyquinoline compounds (chelex, PBT2, and clioquinol) permanently blocked the ROS production and prevented the cardiotoxic effects of amyloid LC. Innovation and Conclusion: Our findings identify the key role of metal ions in driving the ROS-mediated toxic effects of LC. This is a novel conceptual advance that paves the way for new pharmacological strategies aimed at not only counteracting but also totally inhibiting the vicious cycle of redox damage. Antioxid. Redox Signal. 27, 567-582.


Assuntos
Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Metais/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Humanos , Estresse Oxidativo , Oxiquinolina , Transdução de Sinais
18.
Mol Biosyst ; 12(11): 3447-3458, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27722582

RESUMO

The interpretation of genome-wide association study is difficult, as it is hard to understand how polymorphisms can affect gene regulation, in particular for trans-regulatory elements located far from their controlling gene. Using RNA or protein expression data as phenotypes, it is possible to correlate their variations with specific genotypes. This technique is usually referred to as expression Quantitative Trait Loci (eQTLs) analysis and only few packages exist for the integration of genotype patterns and expression profiles. In particular, tools are needed for the analysis of next-generation sequencing (NGS) data on a genome-wide scale, which is essential to identify eQTLs able to control a large number of genes (hotspots). Here we present SPIRE (Software for Polymorphism Identification Regulating Expression), a generic, modular and functionally highly flexible pipeline for eQTL processing. SPIRE integrates different univariate and multivariate approaches for eQTL analysis, paying particular attention to the scalability of the procedure in order to support cis- as well as trans-mapping, thus allowing the identification of hotspots in NGS data. In particular, we demonstrated how SPIRE can handle big association study datasets, reproducing published results and improving the identification of trans-eQTLs. Furthermore, we employed the pipeline to analyse novel data concerning the genotypes of two different C. elegans strains (N2 and Hawaii) and related miRNA expression data, obtained using RNA-Seq. A miRNA regulatory hotspot was identified in chromosome 1, overlapping the transcription factor grh-1, known to be involved in the early phases of embryonic development of C. elegans. In a follow-up qPCR experiment we were able to verify most of the predicted eQTLs, as well as to show, for a novel miRNA, a significant difference in the sequences of the two analysed strains of C. elegans. SPIRE is publicly available as open source software at , together with some example data, a readme file, supplementary material and a short tutorial.


Assuntos
Caenorhabditis elegans/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica , MicroRNAs/genética , Locos de Características Quantitativas , Software , Animais , Mapeamento Cromossômico , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Interferência de RNA , RNA Mensageiro/genética , Análise de Sequência de RNA
19.
J Biol Chem ; 291(13): 6958-66, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26884339

RESUMO

The aggregation of amyloid ß protein (Aß) is a fundamental pathogenic mechanism leading to the neuronal damage present in Alzheimer disease, and soluble Aß oligomers are thought to be a major toxic culprit. Thus, better knowledge and specific targeting of the pathways that lead to these noxious species may result in valuable therapeutic strategies. We characterized some effects of the molecular chaperone clusterin, providing new and more detailed evidence of its potential neuroprotective effects. Using a classical thioflavin T assay, we observed a dose-dependent inhibition of the aggregation process. The global analysis of time courses under different conditions demonstrated that clusterin has no effect on the elongation rate but mainly interferes with the nucleation processes (both primary and secondary), reducing the number of nuclei available for further fibril growth. Then, using a recently developed immunoassay based on surface plasmon resonance, we obtained direct evidence of a high-affinity (KD= 1 nm) interaction of clusterin with biologically relevant Aß1-42oligomers, selectively captured on the sensor chip. Moreover, with the same technology, we observed that substoichiometric concentrations of clusterin prevent oligomer interaction with the antibody 4G8, suggesting that the chaperone shields hydrophobic residues exposed on the oligomeric assemblies. Finally, we found that preincubation with clusterin antagonizes the toxic effects of Aß1-42oligomers, as evaluated in a recently developedin vivomodel inCaenorhabditis elegans.These data substantiate the interaction of clusterin with biologically active regions exposed on nuclei/oligomers of Aß1-42, providing a molecular basis for the neuroprotective effects of the chaperone.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Caenorhabditis elegans/efeitos dos fármacos , Clusterina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Faringe/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/síntese química , Peptídeos beta-Amiloides/toxicidade , Animais , Bioensaio , Caenorhabditis elegans/fisiologia , Clusterina/isolamento & purificação , Humanos , Cinética , Larva/efeitos dos fármacos , Larva/fisiologia , Fármacos Neuroprotetores/isolamento & purificação , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/toxicidade , Faringe/fisiologia , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/patologia , Ligação Proteica
20.
Neurobiol Dis ; 88: 75-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26792398

RESUMO

One attractive pharmacological strategy for Alzheimer's disease (AD) is to design small peptides to interact with amyloid-ß (Aß) protein reducing its aggregation and toxicity. Starting from clinical observations indicating that patients coding a mutated Aß variant (AßA2V) in the heterozygous state do not develop AD, we developed AßA2V synthetic peptides, as well as a small peptide homologous to residues 1-6. These hindered the amyloidogenesis of Aß and its neurotoxicity in vitro, suggesting a basis for the design of a new small peptide in D-isomeric form, linked to the arginine-rich TAT sequence [Aß1-6A2V-TAT(D)], to allow translocation across biological membranes and the blood-brain barrier. Aß1-6A2V-TAT(D) was resistant to protease degradation, stable in serum and specifically able to interfere with Aß aggregation in vitro, reducing the appearance of toxic soluble species and protecting transgenic C. elegans from toxicity related to the muscular expression of human Aß. These observations offer a proof of concept for future pharmacological studies in mouse models of AD, providing a foundation for the design of AßA2V-based peptidomimetic molecules for therapeutic purposes.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Mutação/genética , Síndromes Neurotóxicas , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/toxicidade , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Produtos do Gene tat/genética , Produtos do Gene tat/metabolismo , Humanos , Técnicas In Vitro , Transtornos dos Movimentos/etiologia , Junção Neuromuscular/fisiopatologia , Síndromes Neurotóxicas/complicações , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/genética , Paralisia/etiologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/toxicidade , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...