Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Horm Behav ; 158: 105464, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070354

RESUMO

Experiencing early life adversity (ELA) alters stress physiology and increases the risk for developing psychiatric disorders. The social environment can influence dynamics of stress responding and buffer and/or transfer stress across individuals. Yet, the impact of ELA on sensitivity to the stress of others and social behavior following stress is unknown. Here, to test the impact of ELA on social and physiological responses to stress, circulating blood corticosterone (CORT) and social behaviors were assessed in adult male and female mice reared under limited bedding and nesting (LBN) or control conditions. To induce stress, one cagemate of a pair-housed cage underwent a footshock paradigm and was then returned to their unshocked partner. CORT was measured in both groups of mice 20 or 90 min after stress exposure, and social behaviors were recorded and analyzed. ELA rearing influenced the CORT response to stress in a sex-specific manner. In males, both control and ELA-reared mice exhibited similar stress transfer to unshocked cagemates and similar CORT dynamics. In contrast, ELA females showed a heightened stress transfer to unshocked cagemates, and sustained elevation of CORT relative to controls, indicating enhanced stress contagion and a failure to terminate the stress response. Behaviorally, ELA females displayed decreased allogrooming and increased investigative behaviors, while ELA males showed reduced huddling. Together, these findings demonstrate that ELA influenced HPA axis dynamics, social stress contagion and social behavior. Further research is needed to unravel the underlying mechanisms and long-term consequences of ELA on stress systems and their impact on behavioral outcomes.


Assuntos
Experiências Adversas da Infância , Corticosterona , Humanos , Adulto , Camundongos , Masculino , Animais , Feminino , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Estresse Psicológico/psicologia
2.
bioRxiv ; 2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37502995

RESUMO

Experiencing early life adversity (ELA) alters stress physiology and increases the risk for developing psychiatric disorders. The social environment can influence dynamics of stress responding and buffer and/or transfer stress across individuals. Yet, the impact of ELA on sensitivity to the stress of others and social behavior following stress is unknown. Here, to test the impact of ELA on social and physiological responses to stress, circulating blood corticosterone (CORT) and social behaviors were assessed in adult male and female mice reared under limited bedding and nesting (LBN) or control conditions. To induce stress, one cagemate of a pair-housed cage underwent a footshock paradigm and was then returned to their unshocked partner. CORT was measured in both mice 20 or 90 minutes after stress exposure, and social behaviors were recorded and analyzed. ELA rearing influenced the CORT response to stress in a sex-specific manner. In males, both control and ELA-reared mice exhibited similar stress transfer to unshocked cagemates and similar CORT dynamics. In contrast, ELA females showed a heightened stress transfer to unshocked cagemates, and sustained elevation of CORT relative to controls, indicating enhanced stress contagion and a failure to terminate the stress response. Behaviorally, ELA females displayed decreased allogrooming and increased investigative behaviors, while ELA males showed reduced huddling. Together, these findings demonstrate that ELA influenced HPA axis dynamics, social stress contagion and social behavior. Further research is needed to unravel the underlying mechanisms and long-term consequences of ELA on stress systems and their impact on behavioral outcomes.

3.
Physiol Behav ; 269: 114289, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37422081

RESUMO

Adolescence is a period of development in which shifts in responses to glucocorticoids is well-documented. Obesity and metabolic syndrome are substantial health issues whose rates continue to rise in both adult and adolescent populations. Though many interacting factors contribute to these dysfunctions, how these shifts in glucocorticoid responses may be related remain unknown. Using a model of oral corticosterone (CORT) exposure in male and female mice, we demonstrate differential responses during adolescence (30-58 days of age) or adulthood (70-98 day of age) in endpoints relevant to metabolic function. Our data indicate that CORT resulted in significant weight gain in adult- and adolescent-exposed females and adult-exposed males, but not adolescent-exposed males. Despite this difference, all animals treated with high levels of CORT showed significant increases in white adipose tissue, indicating a dissociation between weight gain and adiposity in adolescent-treated males. Similarly, all experimental groups showed significant increases in plasma insulin, leptin, and triglyceride levels, further suggesting potential disconnects between overt weight gain, and underlying metabolic dysregulation. Finally, we found age- and dose-dependent changes in the expression of hepatic genes important in glucocorticoid receptor and lipid regulation, which showed different patterns in males and females. Thus, altered transcriptional pathways in the liver might be contributing differentially to the similar metabolic phenotype observed among these experimental groups. We also show that despite little CORT-induced changes in the hypothalamic levels of orexin-A and NPY, we found that food and fluid intake were elevated in adolescent-treated males and females. These data indicate chronic exposure to elevated glucocorticoid levels results in metabolic dysfunction in both males and females, which can be further modulated by developmental stage.


Assuntos
Corticosterona , Glucocorticoides , Camundongos , Masculino , Feminino , Animais , Glucocorticoides/metabolismo , Obesidade/metabolismo , Aumento de Peso , Adiposidade
4.
Front Endocrinol (Lausanne) ; 13: 1000732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246897

RESUMO

Prenatal exposure to testosterone is implicated in the etiology of autism spectrum disorder (ASD). Hypertensive disorders of pregnancy and polycystic ovary syndrome are associated with both hyperandrogenism and increased risk for ASD. We examined whether increased maternal testosterone mediates the relationship between these hyperandrogenic disorders (HDs) during pregnancy and child communication and social skills. Maternal plasma was collected during the second trimester and parent-report measures of child communication and social skills were obtained at 4.5-6.5 years of age from 270 participants enrolled in the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-be (nuMoM2b). Our retrospective frequency-matched cohort study design identified 58 mothers with one or both of the HDs and 58 matched controls. Women diagnosed with an HD who carried a female had higher testosterone levels compared to those carrying a male (t(56) = -2.70, p = 0.01). Compared to females controls, females born to women with an HD had significantly higher scores on the Social Communication Questionnaire (t(114) = -2.82, p =0.01). Maternal testosterone partially mediated the relationship between a diagnosis of an HD and SCQ scores among females. These findings point to sex-specific associations of two HDs - hypertensive disorders of pregnancy and polycystic ovary syndrome - on child communication and social skills and a mediating effect of maternal testosterone during pregnancy. Further research is needed to understand placental-mediated effects of maternal testosterone on child brain development and neurodevelopmental outcomes.


Assuntos
Transtorno do Espectro Autista , Hipertensão Induzida pela Gravidez , Síndrome do Ovário Policístico , Androgênios , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/etiologia , Estudos de Casos e Controles , Criança , Estudos de Coortes , Comunicação , Feminino , Humanos , Hipertensão Induzida pela Gravidez/epidemiologia , Hipertensão Induzida pela Gravidez/etiologia , Masculino , Mães , Placenta , Gravidez , Estudos Retrospectivos , Habilidades Sociais , Testosterona
5.
Neurobiol Stress ; 18: 100457, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35592027

RESUMO

The hormonal stress response mediated by the hypothalamic-pituitary-adrenal (HPA) axis changes significantly during puberty in a variety of species, including humans. For example, stress-induced adrenocorticotropic hormone (ACTH) and corticosterone responses are greater in prepubertal compared to adult rats, yet the mechanisms that mediate these age-related differences are unclear. It is possible that the pituitary and adrenal glands have higher hormonal concentrations prior to puberty, thus enabling a greater hormonal response if a stressor were to occur. Thus, we tested the hypothesis that resting levels of ACTH, and its precursor, proopiomelanocortin (POMC), are higher in the pituitary, and corticosterone levels are higher in the adrenals, of prepubertal compared to adult rats. Furthermore, to investigate any potential sex differences in these parameters, both males and females were assessed. Here we report that despite similar circulating plasma ACTH and corticosterone levels, prepubertal males and females have greater ACTH levels in the pituitary and greater corticosterone concentrations in the adrenals compared to adult males and females. Moreover, we show that POMC protein levels are significantly greater in the pituitary gland of prepubertal than adult rats, particularly in prepubertal females. These data suggest that increased glandular production of ACTH and corticosterone during puberty in part mediate pubertal differences in hormonal stress reactivity and highlight how each node of the HPA axis may contribute to these developmental changes. Given the dramatic increase in stress-related dysfunctions during puberty, continued study of all parts of the HPA axis will be imperative.

6.
Horm Behav ; 140: 105125, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35131524

RESUMO

Fetal exposure to testosterone may contribute to vulnerability for autism spectrum disorder (ASD). It is hypothesized that placental aromatase prevents fetal exposure to maternal testosterone, however, this pathway and the implications for child neurodevelopment have not been fully explored. We examined the relationships between prenatal maternal testosterone and estradiol at 19.2 ± 1.3 weeks, cord blood testosterone and estradiol at birth, placental aromatase mRNA expression, and neurodevelopment using the Social Communication Questionnaire (SCQ), the Behavioral Assessment System for Children, 3rd Edition (BASC-3), and the Empathizing Quotient for Children (EQ-C) at 4.5-6.5 years of age in a sample of 270 Nulliparous-Mothers-to-be (nuMoM2b) study participants. Maternal testosterone levels were positively associated with SCQ scores, but the association was not significant after adjusting for maternal age at delivery, nor was there a significant interaction with sex. Maternal estradiol levels were negatively associated with BASC-3 Clinical Probability scores among males (n = 139). We report a significant interaction effect of cord blood testosterone and fetal sex on both total SCQ scores and t-scores on the Developmental Social Disorders subscale. Placental aromatase was not associated with any neurodevelopmental or hormone measure, but under conditions of low placental aromatase expression, high maternal testosterone was positively associated with SCQ scores in males (n = 46). No other associations between hormone levels and neurodevelopment were significant. Our findings provide a foundation for further investigation of the mechanisms through which maternal sex hormones and placental steroidogenesis may affect fetal hormone production and neurobehavior.


Assuntos
Aromatase , Transtorno do Espectro Autista , Hormônios Esteroides Gonadais , Sistema Nervoso/crescimento & desenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Aromatase/metabolismo , Transtorno do Espectro Autista/etiologia , Criança , Pré-Escolar , Feminino , Hormônios Esteroides Gonadais/metabolismo , Humanos , Recém-Nascido , Masculino , Placenta/metabolismo , Gravidez , Testosterona
7.
Brain Res ; 1760: 147371, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33600828

RESUMO

The hormonal stress response, mediated by the hypothalamic-pituitary-adrenal (HPA) axis, shows greater responsiveness to various stressors in prepubertal compared to adult animals. Though the implications of this age-related change are unclear, this heightened reactivity might contribute to the increase in stress-related dysfunctions observed during adolescence. Interestingly, prepubertal animals show greater stress-induced neural activation compared to adults in the paraventricular nucleus of the hypothalamus (PVN), the area responsible for initiating the hormonal stress response. Thus, it is possible that direct afferents to the PVN, such as the anterior bed nucleus of the stria terminalis (aBST), nucleus of the solitary tract (NTS), posterior BST (pBST), medial preoptic area (MPOA), and dorsomedial nucleus (DMN), contribute to this age-dependent change in reactivity. To investigate these possibilities, two separate experiments were conducted in prepubertal (30 days old) and adult (70 days old) male rats using the retrograde tracer, Fluoro-Gold (FG), and FOS immunohistochemistry to study neural connectivity and activation, respectively. Though there was no difference in the number or size of FG-positive cells in the PVN afferents we examined, we found a significantly greater number of stress-induced FOS-like-positive cells in the aBST and significantly fewer in the DMN in prepubertal compared to adult animals. Together these data suggest that functional, instead of structural, changes in nuclei that project to the PVN may lead to the greater PVN stress responsiveness observed prior to adolescence. Furthermore, these data indicate that nuclei known to directly modulate HPA stress responsiveness show differential activation patterns before and after adolescent development.


Assuntos
Envelhecimento/fisiologia , Vias Neurais/citologia , Neurônios Aferentes/citologia , Núcleo Hipotalâmico Paraventricular/citologia , Animais , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Vias Neurais/fisiologia , Neurônios Aferentes/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Ratos , Ratos Sprague-Dawley , Estresse Psicológico
8.
Stress ; 24(5): 496-503, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33587012

RESUMO

Stress-related psychological dysfunctions show a marked increase during adolescence, yet the mechanisms that mediate these vulnerabilities are unknown. Notably, however, adolescence is associated with changes in hormonal stress reactivity mediated by the hypothalamic-pituitary-adrenal (HPA) axis, which might contribute to these dysfunctions. Specifically, pre-adolescent animals display prolonged stress-induced HPA responses compared to adults. Previous experience with stressors further modify these changes in stress reactivity, such that repeated exposure to the same stressor results in an augmented HPA response prior to adolescence, but a habituated response in adulthood. It is unclear when during adolescence the habituated, adult-like response develops to a repeated stressor. Using male rats at various ages that span adolescence (30-70 days of age), we show that by mid-adolescence (i.e. 42 days of age), animals show neither a facilitated nor a habituated HPA hormonal response following four days of repeated restraint stress (4RS) compared to a single restraint session (1RS). We also show that the habituated HPA response to 4RS develops between late-adolescence and young adulthood (i.e. between 56 and 70 days of age, respectively). Further, we find age- and experience-dependent changes in progesterone and testosterone secretion, indicating that the interaction between development and experience affects stress-induced hormonal responses outside of canonical HPA-related hormones. Despite these hormonal differences mediated by age and experience, repeated restraint stress resulted in decreased fecal boli production at all four ages, suggesting dissociation between hormonal and autonomic reactivity during adolescence. These data indicate that HPA plasticity is significantly affected by adolescence and that a habituated hormonal response to homotypic stress does not occur until young adulthood. A greater appreciation of these changes in stress reactivity will contribute to our understanding of the psychological vulnerabilities often associated with stressful adolescence.


Assuntos
Hormônio Adrenocorticotrópico , Corticosterona , Hormônio Adrenocorticotrópico/metabolismo , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Restrição Física , Estresse Psicológico
9.
Dev Neurosci ; 41(1-2): 132-138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31430748

RESUMO

Adolescence is associated with significant reductions in hippocampal cellular proliferation and neurogenesis, the physiological and behavioral implications of which are unclear. Though sex differences exist in these proliferative processes in adulthood, relatively little is known about the role sex plays in these adolescent-related changes. To address this gap, we examined cross-sectional area of the dentate gyrus and cellular proliferation, as measured by Ki-67 immunohistochemistry, in pre- (30 days), mid- (45 days), and post-adolescent (70 days) male and female rats. We also investigated the number of immature neurons using doublecortin (DCX) immunohistochemistry in pre- and post-adolescent males and females. Despite increases in the size of the dentate gyrus during adolescence, we found significant adolescent-related decreases in hippocampal proliferation in both males and females, with a more dramatic decrease in males, indicating both age- and sex-dependent changes in the dentate gyrus. We also found an adolescent-related decline in the number of immature neurons in the dentate gyrus of male rats and a female-biased sex difference in the number of immature neurons in adults. Given these significant changes in the dentate gyrus, these data suggest that this period in development might be particularly sensitive to internal and external factors known to modulate neurogenesis, with potential sex-specific neurobehavioral ramifications.


Assuntos
Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Neurogênese/fisiologia , Neurônios/citologia , Caracteres Sexuais , Animais , Proliferação de Células , Proteína Duplacortina , Feminino , Masculino , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley
10.
Sci Rep ; 9(1): 7324, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086272

RESUMO

Social hierarchies emerge when animals compete for access to resources such as food, mates or physical space. Wild and laboratory male mice have been shown to develop linear hierarchies, however, less is known regarding whether female mice have sufficient intrasexual competition to establish significant social dominance relationships. In this study, we examined whether groups of outbred CD-1 virgin female mice housed in a large vivaria formed social hierarchies. We show that females use fighting, chasing and mounting behaviors to rapidly establish highly directionally consistent social relationships. Notably, these female hierarchies are less linear, steep and despotic compared to male hierarchies. Female estrus state was not found to have a significant effect on aggressive behavior, though dominant females had elongated estrus cycles (due to increased time in estrus) compared to subordinate females. Plasma estradiol levels were equivalent between dominant and subordinate females. Subordinate females had significantly higher levels of basal corticosterone compared to dominant females. Analyses of gene expression in the ventromedial hypothalamus indicated that subordinate females have elevated ERα, ERß and OTR mRNA compared to dominant females. This study provides a methodological framework for the study of the neuroendocrine basis of female social aggression and dominance in laboratory mice.


Assuntos
Comportamento Animal/fisiologia , Corticosterona/sangue , Dominação-Subordinação , Hierarquia Social , Animais , Animais não Endogâmicos/sangue , Animais não Endogâmicos/psicologia , Corticosterona/fisiologia , Estradiol/sangue , Estradiol/fisiologia , Estro/fisiologia , Feminino , Masculino , Camundongos/sangue , Camundongos/psicologia , Receptores de Estrogênio/metabolismo , Fatores Sexuais , Núcleo Hipotalâmico Ventromedial/metabolismo
11.
JAMA Netw Open ; 2(2): e190083, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30794303

RESUMO

Importance: Early breast development is a risk factor for breast cancer, and girls with a breast cancer family history (BCFH) experience breast development earlier than girls without a BCFH. Objectives: To assess whether prepubertal androgen concentrations are associated with timing of breast development (analysis 1) and to compare serum androgen concentrations in girls with and without a BCFH (analysis 2). Design, Setting, and Participants: Prospective cohort study of 104 girls aged 6 to 13 years at baseline using data collected between August 16, 2011, and March 24, 2016, from the Lessons in Epidemiology and Genetics of Adult Cancer From Youth (LEGACY) Girls Study, New York site. Exposures: Analysis 1 included serum concentrations of dehydroepiandrosterone sulfate, androstenedione, and testosterone (free and total) measured before breast development and divided at the median into high and low categories. Analysis 2 included the degree of BCFH: first-degree was defined as having a mother with breast cancer and second-degree was defined as having a grandmother or aunt with breast cancer. Main Outcomes and Measures: Analysis 1 included age at onset of breast development measured using the Pubertal Development Scale (scores range from 1-4; scores ≥2 indicate breast development), and analysis 2 included serum androgen concentrations. We also assessed breast cancer-specific distress using the 8-item Child Impact of Events Scale. Results: Our analyses included 36 girls for the prospective model, 92 girls for the cross-sectional model, and 104 girls for the longitudinal model. Of the 104 girls, the mean (SD) age at baseline was 10.3 (2.5) years, and 41 (39.4%) were non-Hispanic white, 41 (39.4%) were Hispanic, 13 (12.5%) were non-Hispanic black, and 9 (8.7%) were other race/ethnicity. Forty-two girls (40.4%) had a positive BCFH. Girls with prepubertal androstenedione concentrations above the median began breast development 1.5 years earlier than girls with concentrations below the median (Weibull survival model-estimated median age, 9.4 [95% CI, 9.0-9.8] years vs 10.9 [95% CI, 10.4-11.5] years; P = .001). Similar patterns were observed for dehydroepiandrosterone sulfate (1.1 years earlier: age, 9.6 [95% CI, 9.1-10.1] years vs 10.7 [95% CI, 10.2-11.3] years; P = .009), total testosterone (1.4 years earlier: age, 9.5 [95% CI, 9.1-9.9] years vs 10.9 [95% CI, 10.4-11.5] years; P = .001), and free testosterone (1.1 years earlier: age, 9.7 [95% CI, 9.2-10.1] years vs 10.8 [95% CI, 10.2-11.4] years; P = .01). Compared with girls without BCFH, girls with a first-degree BCFH, but not a second-degree BCFH, had 240% higher androstenedione concentrations (geometric means: no BCFH, 0.49 ng/mL vs first-degree BCFH, 1.8 ng/mL vs second-degree, 1.6 ng/mL; P = .01), 10% higher total testosterone concentrations (12.7 ng/dL vs 14.0 ng/dL vs 13.7 ng/dL; P = .01), and 92% higher free testosterone concentrations (1.3 pg/mL vs 2.5 pg/mL vs 0.3 pg/mL; P = .14). The dehydroepiandrosterone sulfate concentration did not differ between BCFH-positive and BCFH-negative girls but was elevated in girls with breast cancer-specific distress. Conclusions and Relevance: Our findings suggest that androgen concentrations may differ between girls with and without a BCFH and that elevated hormone concentrations during adolescence may be another factor to help explain the familial clustering of breast cancer.


Assuntos
Androgênios/sangue , Neoplasias da Mama/epidemiologia , Mama/crescimento & desenvolvimento , Puberdade , Adolescente , Criança , Estudos Transversais , Feminino , Humanos , Anamnese , New York/epidemiologia , Estudos Prospectivos , Puberdade/sangue , Puberdade/fisiologia
12.
Front Behav Neurosci ; 12: 192, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197591

RESUMO

Adolescent development is marked by significant changes in neurobiological structure and function. One such change is the substantial adolescent-related decline in cellular proliferation and neurogenesis in the dentate gyrus of the hippocampal formation. Though the behavioral implications of these developmental shifts in cell proliferation are unclear, these changes might contribute to the altered cognitive and emotional functions associated with puberty and adolescence. The significant decrease in cellular proliferation throughout adolescence might make the hippocampus more vulnerable to perturbations during this developmental stage, particularly to factors known to disrupt neurogenesis, such as chronic exposure to stress-related hormones. To examine this possibility, we first measured cellular proliferation in the dentate gyrus of male and female C57BL/6N mice before and after adolescence and then assessed both cellular proliferation and the number of immature neurons in mice treated with oral corticosterone for 4 weeks during either adolescence or adulthood. We found significant age-related decreases in hippocampal cellular proliferation in both males and females. Though the greatest decrease in proliferation was during adolescence, we also observed that proliferation continued to decline through young adulthood. Despite the significant effect of chronic oral corticosterone on body weight gain in both the adolescent- and adult-treated males and females and the subtle, but significant suppressive effect of corticosterone on the number of immature neurons in the adolescent-treated males, cell proliferation in the hippocampus was unaffected by these treatments. These data show that the substantial adolescent-related change in cellular proliferation in the dentate gyrus is largely unaffected by chronic oral corticosterone exposure in males and females. Thus, despite being vulnerable to the metabolic effects of these chronic corticosterone treatments, these results indicate that the developmental changes in cellular proliferation in the dentate gyrus are relatively resilient to these treatments in mice.

13.
Front Neuroendocrinol ; 49: 43-51, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29275000

RESUMO

As adolescents transition from childhood to adulthood, many physiological and neurobehavioral changes occur. Shifts in neuroendocrine function are one such change, including the hormonal systems that respond to stressors. This review will focus on these hormonal changes, with a particular emphasis on the pubertal and adolescent maturation of the hypothalamic-pituitary-adrenal (HPA) axis. Furthermore, this review will concentrate on studies using animal models, as these model systems have contributed a great deal to our mechanistic understanding of how factors such as sex and experience with stressors shape hormonal reactivity during development. Continued study of the maturation of stress reactivity will undoubtedly shed much needed light on the stress-related vulnerabilities often associated with adolescence as well as providing us with possible strategies to mitigate these vulnerabilities. This area of research may lead to discoveries that enhance the well-being of adolescents, ultimately providing them with greater opportunities to mature into healthy adults.


Assuntos
Modelos Animais de Doenças , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Maturidade Sexual/fisiologia , Estresse Psicológico/metabolismo , Animais , Humanos
14.
Psychoneuroendocrinology ; 86: 218-224, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29020649

RESUMO

Adolescence is associated with the maturation of the hypothalamic-pituitary-adrenal (HPA) axis, the major neuroendocrine axis mediating the hormonal stress response. Adolescence is also a period in development marked by a variety of stress-related vulnerabilities, including psychological and physiological dysfunctions. Many of these vulnerabilities are accompanied by a disrupted HPA axis. In adult mice, a model of disrupted HPA function has been developed using oral chronic corticosterone administration via the drinking water, which results in various physiological and neurobehavioral abnormalities, including changes in stress reactivity and anxiety-like behaviors. In an effort to further complement and extend this model, we tested the impact of HPA disruption in adolescent mice. We also examined whether this disruption led to different outcomes depending on whether the treatment happened during adolescence or adulthood. In the current set of experiments, we exposed adult (70days of age) or adolescent (30days of age) male C57BL/6N mice to 4 weeks of either 0 or 25µg/ml oral corticosterone via their drinking water. We measured body weight during treatment and plasma corticosterone levels and activation of the paraventricular nucleus (PVN), as indexed by FOS immunohistochemistry, before and after a 30min session of restraint stress. Our data indicate that adolescent animals exposed to chronic corticosterone showed weight loss during treatment, an effect not observed in adults. Further, we found stress failed to elevate plasma corticosterone levels in treated mice, regardless of whether exposure occurred in adulthood or adolescence. Despite this reduced hormonal responsiveness, we found significant neural activation in the PVN of both adult- and adolescent-treated mice, indicating a dissociation between stress-induced peripheral and central stress responses following chronic corticosterone exposure. Moreover, stress-induced neural activation in the PVN was unaffected by chronic corticosterone treatment in adult animals, but led to a hyper-responsive PVN in the corticosterone-treated adolescent animals, suggesting an age-specific effect of corticosterone treatment on later PVN stress reactivity. Together, these experiments highlight the influence of developmental stage on somatic and neuroendocrine outcomes following chronic HPA disruption by noninvasive, oral corticosterone treatment. Given the substantial vulnerabilities to HPA dysfunctions during adolescence this model may prove useful in better understanding these vulnerabilities.


Assuntos
Corticosterona/fisiologia , Sistemas Neurossecretores/crescimento & desenvolvimento , Sistemas Neurossecretores/metabolismo , Hormônio Adrenocorticotrópico/sangue , Fatores Etários , Animais , Peso Corporal , Corticosterona/administração & dosagem , Corticosterona/sangue , Sistema Hipotálamo-Hipofisário/crescimento & desenvolvimento , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Sistema Hipófise-Suprarrenal/crescimento & desenvolvimento , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia , Estresse Psicológico/fisiopatologia
15.
Neuroscience ; 360: 210-219, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28768158

RESUMO

Adolescence is accompanied by the maturation of several stress-responsive areas of the brain including the amygdala, a key region for the acquisition and expression of conditioned fear. These changes may contribute to the development of stress-related disorders in adolescence, such as anxiety and depression, and increase the susceptibility to these psychopathologies later in life. Here, we assessed the effects of acute restraint stress on fear learning and amygdala activation in pre-adolescent and adult male rats. Pre-adolescents exposed to stress prior to fear conditioning showed greater resistance to the extinction of fear memories than adults. At the cellular level, the combination of stress and fear conditioning resulted in a greater number of FOS-positive cells in the basolateral nucleus of the amygdala (BLA) than fear conditioning alone, and this increase was greater in pre-adolescents than in adults. Despite age-dependent differences, we found no changes in glucocorticoid receptor (GR) levels in the amygdala of either pre-adolescent or adult males. Overall, our data indicate that stress prior to fear conditioning leads to extinction-resistant fear responses in pre-adolescent animals, and that the BLA may be one neural locus mediating these age-dependent effects of stress on fear learning.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Medo/fisiologia , Aprendizagem/fisiologia , Envelhecimento , Animais , Condicionamento Psicológico/fisiologia , Extinção Psicológica/efeitos dos fármacos , Masculino , Memória/fisiologia , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Estresse Fisiológico
16.
Endocrinology ; 158(7): 2239-2254, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28510653

RESUMO

Glucocorticoids are potent modulators of metabolic and behavioral function. Their role as mediators in the "stress response" is well known, but arguably their primary physiological function is in the regulation of cellular and organismal metabolism. Disruption of normal glucocorticoid function is linked to metabolic disease, such as Cushing syndrome. Glucocorticoids are also elevated in many forms of obesity, suggesting that there are bidirectional effects of these potent hormones on metabolism and metabolic function. Adolescence is a time of rapid physical growth, and disruptions during this critical time likely have important implications for adult function. The hypothalamic-pituitary-adrenal axis continues to mature during this period, as do tissues that respond to glucocorticoids. In this work, we investigate how chronic noninvasive exposure to corticosterone affects metabolic outcomes (body weight, body composition, insulin, and glucose homeostasis), as well as changes in bone density in both adult and adolescent male mice. Specifically, we report a different pattern of metabolic effects in adolescent mice compared with adults, as well as an altered trajectory of recovery in adolescents and adults. Together, these data indicate the profound influence that adolescent development has on the metabolic outcomes of chronic corticosterone exposure, and describe a tractable model for understanding the short- and long-term impacts of hypercortisolemic states on physiological and neurobehavioral functions.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Corticosterona/farmacologia , Metabolismo/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Síndrome de Cushing/patologia , Síndrome de Cushing/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Psicológico/metabolismo , Fatores de Tempo
17.
Brain Res ; 1666: 11-16, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28435085

RESUMO

During adolescence, the increased susceptibility to stress-related dysfunctions (e.g., anxiety, drug use, obesity) may be influenced by changes in the hormonal stress response mediated by the hypothalamic-pituitary-adrenal (HPA) axis. We have previously reported that restraint stress leads to significantly prolonged HPA responses in pre-adolescent compared to adult rats. Further, pre-adolescent animals exposed to restraint show greater levels of neural activation than adults in the paraventricular nucleus of the hypothalamus (PVN), a key nucleus integrating information from brain regions that coordinate HPA responses. Here, we examined the potential contribution of the noradrenergic A2 region of the nucleus of the solitary tract (NST) as a contributor to these age-dependent shifts in HPA reactivity. Specifically, we used double-labeled immunohistochemistry for FOS and dopamine-ß-hydroxylase (DßH) to measure cellular activation and noradrenergic cells, respectively, before or after restraint stress in pre-adolescent (30days old) and adult (70days old) male rats. We also measured the density of DßH-immunoreactive fibers in the PVN as an index of noradrenergic inputs to this area. We found that pre-adolescent animals have a greater number of DßH-positive cells in the A2 region compared to adults, yet the number and percentage of double-labeled DßH/FOS cells were similar between these two ages. We found no differences between the ages in the staining intensity of DßH-immunoreactive fibers in the PVN. These data indicate there are adolescent-related changes in the number of noradrenergic cells in the A2 region, but no clear association between the increased stress reactivity prior to pubertal maturation and activation of A2 noradrenergic afferents to the PVN.


Assuntos
Neurônios Adrenérgicos/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Rombencéfalo/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Envelhecimento , Animais , Hipotálamo/metabolismo , Masculino , Ratos Sprague-Dawley
18.
Physiol Behav ; 171: 110-119, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28065723

RESUMO

The associations between social status and endogenous testosterone and corticosterone have been well-studied across taxa, including rodents. Dominant social status is typically associated with higher levels of circulating testosterone and lower levels of circulating corticosterone but findings are mixed and depend upon numerous contextual factors. Here, we determine that the social environment is a key modulator of these relationships in Mus musculus. In groups of outbred CD-1 mice living in stable dominance hierarchies, we found no evidence of simple linear associations between social rank and corticosterone or testosterone plasma levels. However, in social hierarchies with highly despotic alpha males that socially suppress other group members, testosterone levels in subordinate males were significantly lower than in alpha males. In less despotic hierarchies, where all animals engage in high rates of competitive interactions, subordinate males had significantly elevated testosterone compared to agonistically inhibited subordinates from despotic hierarchies. Subordinate males from highly despotic hierarchies also had elevated levels of corticosterone compared to alpha males. In pair-housed animals, the relationship was the opposite, with alpha males exhibiting elevated levels of corticosterone compared to subordinate males. Notably, subordinate males living in social hierarchies had significantly higher levels of plasma corticosterone than pair-housed subordinate males, suggesting that living in a large group is a more socially stressful experience for less dominant individuals. Our findings demonstrate the importance of considering social context when analyzing physiological data related to social behavior and using ethologically relevant behavioral paradigms to study the complex relationship between hormones and social behavior.


Assuntos
Corticosterona/sangue , Comportamento Social , Predomínio Social , Testosterona/sangue , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estatística como Assunto , Fatores de Tempo
19.
Brain Res ; 1654(Pt B): 185-191, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27021951

RESUMO

Adolescent development is associated with major changes in emotional and cognitive functions, as well as a rise in stress-related psychological disorders such as anxiety and depression. It is also a time of significant maturation of the brain, marked by structural alterations in many limbic and cortical regions. Though many elegant human neuroimaging studies have described the adolescent-related changes in these regions, relatively little is known about these changes in non-human animals. Moreover, both human and non-human data are lacking on how exposure to chronic stress may disrupt this structural maturation. Given the fundamental structure-function relationship in the nervous system, it will be important to understand how these normative and stress-induced structural alterations during adolescence influence psychological function, which in turn can modify future neural development. The purpose of this brief review is to describe the impact of stress on the structure of brain regions that continue to show structural maturation during adolescence and are highly sensitive to the effects of chronic stress exposure. Specifically, this review will focus on the amygdala, hippocampal formation, and prefrontal cortex, particularly from a morphological perspective. As many unanswered questions remain in this area of investigation, potential future lines of research are also discussed. A deeper appreciation of how stress affects adolescent brain development will be needed if we are to gain a better understanding of the mechanisms that mediate the increase in stress-related psychological dysfunctions often observed during this stage of development. This article is part of a Special Issue entitled SI: Adolescent plasticity.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Estresse Psicológico/patologia , Adolescente , Animais , Encéfalo/fisiopatologia , Humanos , Maturidade Sexual/fisiologia , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...