Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 5(3): 432-443, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28059418

RESUMO

We have designed versatile polymeric nanoparticles with cancer cell specific targeting capabilities via aptamer conjugation after the successful encapsulation of curcumin and superparamagnetic iron oxide nanoparticles (SPIONs) inside a PLGA nanocapsule. These targeted nanocomposites were selectively taken up by tumor cells, under in vitro conditions, demonstrating the effectiveness of the aptamer targeting mechanism. Moreover, the nanocomposite potentially functioned as efficient multiprobes for optical, magnetic resonance imaging (MRI) and photoacoustic imaging contrast agents in the field of cancer diagnostics. The hyperthermic ability of these nanocomposites was mediated by SPIONs upon NIR-laser irradiation. In vitro cytotoxicity was shown by curcumin-loaded nanoparticles as well as the photothermal ablation of cancer cells mediated by the drug-encapsulated nanocomposite demonstrated the potential therapeutic effect of the nanocomposite. In short, we portray the aptamer-conjugated nanocomposite as a multimodal material capable of serving as a contrast agent for MR, photoacoustic and optical imaging. Furthermore, the nanocomposite functions as a targetable drug nanocarrier and a NIR-laser inducible hyperthermic material that is capable of ablating PANC-1 and MIA PaCa-2 cancer cell lines.


Assuntos
Aptâmeros de Nucleotídeos/química , Meios de Contraste/química , Ácido Láctico/química , Nanopartículas de Magnetita/química , Nanocompostos/química , Neoplasias/diagnóstico por imagem , Ácido Poliglicólico/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Imagem Óptica/métodos , Técnicas Fotoacústicas/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
2.
ACS Nano ; 9(7): 7009-18, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26020447

RESUMO

Here we investigated the fluorination of graphene oxide nanoribbons (GONRs) using H2 and F2 gases at low temperature, below 200 °C, with the purpose of elucidating their structure and predicting a fluorination mechanism. The importance of this study is the understanding of how fluorine functional groups are incorporated in complex structures, such as GONRs, as a function of temperature. The insight provided herein can potentially help engineer application-oriented materials for several research and industrial sectors. Direct (13)C pulse magic angle spinning (MAS) nuclear magnetic resonance (NMR) confirmed the presence of epoxy, hydroxyl, ester and ketone carbonyl, tertiary alkyl fluorides, as well as graphitic sp(2)-hybridized carbon. Moreover, (19)F-(13)C cross-polarization MAS NMR with (1)H and (19)F decoupling confirmed the presence of secondary alkyl fluoride (CF2) groups in the fluorinated graphene oxide nanoribbon (FGONR) structures fluorinated above 50 °C. First-principles density functional theory calculations gained insight into the atomic arrangement of the most dominant chemical groups. The fluorinated GONRs present atomic fluorine percentages in the range of 6-35. Interestingly, the FGONRs synthesized up to 100 °C, with 6-19% of atomic fluorine, exhibit colloidal similar stability in aqueous environments when compared to GONRs. This colloidal stability is important because it is not common for materials with up to 19% fluorine to have a high degree of hydrophilicity.

4.
Adv Mater ; 25(39): 5632-7, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24038195

RESUMO

Fluorinated graphene oxide (FGO) is reported for the first time as a magnetically responsive drug carrier that can serve both as a magnetic resonance imaging (MRI) and photoacoustic contrast agent, under preclinical settings, and as a type of photothermal therapy. Its hydrophilic nature facilitates biocompatibility. FGO as a broad wavelength absorber, with high charge transfer and strong non-linear scattering is optimal for NIR laser-induced hyperthermia.


Assuntos
Grafite/química , Halogenação , Óxidos/química , Técnicas de Ablação , Grafite/uso terapêutico , Grafite/toxicidade , Humanos , Células MCF-7 , Imageamento por Ressonância Magnética
5.
Nano Lett ; 12(2): 844-9, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22216895

RESUMO

Graphene quantum dots (GQDs), which are edge-bound nanometer-size graphene pieces, have fascinating optical and electronic properties. These have been synthesized either by nanolithography or from starting materials such as graphene oxide (GO) by the chemical breakdown of their extended planar structure, both of which are multistep tedious processes. Here, we report that during the acid treatment and chemical exfoliation of traditional pitch-based carbon fibers, that are both cheap and commercially available, the stacked graphitic submicrometer domains of the fibers are easily broken down, leading to the creation of GQDs with different size distribution in scalable amounts. The as-produced GQDs, in the size range of 1-4 nm, show two-dimensional morphology, most of which present zigzag edge structure, and are 1-3 atomic layers thick. The photoluminescence of the GQDs can be tailored through varying the size of the GQDs by changing process parameters. Due to the luminescence stability, nanosecond lifetime, biocompatibility, low toxicity, and high water solubility, these GQDs are demonstrated to be excellent probes for high contrast bioimaging and biosensing applications.


Assuntos
Antineoplásicos/química , Carbono/química , Grafite/química , Pontos Quânticos , Antineoplásicos/farmacologia , Carbono/farmacologia , Fibra de Carbono , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fluorescência , Grafite/farmacologia , Humanos , Tamanho da Partícula , Solubilidade , Relação Estrutura-Atividade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...