Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Hum Genomics ; 17(1): 50, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287057

RESUMO

BACKGROUND: The use of molecular biomarkers for COVID-19 remains unconclusive. The application of a molecular biomarker in combination with clinical ones that could help classifying aggressive patients in first steps of the disease could help clinician and sanitary system a better management of the disease. Here we characterize the role of ACE2, AR, MX1, ERG, ETV5 and TMPRSS2 for trying a better classification of COVID-19 through knowledge of the disease mechanisms. METHODS: A total of 329 blood samples were genotyped in ACE2, MX1 and TMPRSS2. RNA analyses were also performed from 258 available samples using quantitative polymerase chain reaction for genes: ERG, ETV5, AR, MX1, ACE2, and TMPRSS2. Moreover, in silico analysis variant effect predictor, ClinVar, IPA, DAVID, GTEx, STRING and miRDB database was also performed. Clinical and demographic data were recruited from all participants following WHO classification criteria. RESULTS: We confirm the use of ferritin (p < 0.001), D-dimer (p < 0.010), CRP (p < 0.001) and LDH (p < 0.001) as markers for distinguishing mild and severe cohorts. Expression studies showed that MX1 and AR are significantly higher expressed in mild vs severe patients (p < 0.05). ACE2 and TMPRSS2 are involved in the same molecular process of membrane fusion (p = 4.4 × 10-3), acting as proteases (p = 0.047). CONCLUSIONS: In addition to the key role of TMPSRSS2, we reported for the first time that higher expression levels of AR are related with a decreased risk of severe COVID-19 disease in females. Moreover, functional analysis demonstrates that ACE2, MX1 and TMPRSS2 are relevant markers in this disease.


Assuntos
COVID-19 , Feminino , Humanos , COVID-19/genética , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/genética , Marcadores Genéticos , Bases de Dados Factuais , Serina Endopeptidases/genética , Proteínas de Resistência a Myxovirus
2.
Cancers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008363

RESUMO

Here, the role of non-invasive biomarkers in liquid biopsy was evaluated, mainly in exosomes and mitochondrial DNA (mtDNA) as promising, novel, and stable biomarkers for renal cell carcinoma (RCC). A total of 140 fractions (named from B to F) obtained by ultracentrifugations of whole blood samples from 28 individuals (13 patients and 15 controls) were included. Nanoparticle Tracking Analysis (NTA) was conducted to characterized exosomal fraction. Subsequently, an analysis of digital PCR (dPCR) using the QuantStudio™ 3D Digital PCR platform was performed and the quantification of mtDNA copy number by QuantStudioTM 12K Flex Real-Time PCR System (qPCR) was developed. Moreover, Next Generation Sequencing (NGS) analyses were included using MiSeq system (Illumina, San Diego, CA, USA). An F fraction, which contains all exosome data and all mitochondrial markers, was identified in dPCR and qPCR with statistically significant power (adjusted p values ≤ 0.03) when comparing cases and controls. Moreover, present analysis in mtDNA showed a relevant significance in RCC aggressiveness. To sum up, this is the first time a relation between exosomal mtDNA markers and clinical management of RCC is analyzed. We suggest a promising strategy for future liquid biopsy RCC analysis, although more analysis should be performed prior to application in routine clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...