Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 67: 102902, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797370

RESUMO

The interaction between plants and phytophagous arthropods encompasses a complex network of molecules, signals, and pathways to overcome defences generated by each interacting organism. Although most of the elements and modulators involved in this interplay are still unidentified, plant redox homeostasis and signalling are essential for the establishment of defence responses. Here, focusing on the response of Arabidopsis thaliana to the spider mite Tetranychus urticae, we demonstrate the involvement in plant defence of the thioredoxin TRXh5, a small redox protein whose expression is induced by mite infestation. TRXh5 is localized in the cell membrane system and cytoplasm and is associated with alterations in the content of reactive oxygen and nitrogen species. Protein S-nitrosylation signal in TRXh5 over-expression lines is decreased and alteration in TRXh5 level produces changes in the JA/SA hormonal crosstalk of infested plants. Moreover, TRXh5 interacts and likely regulates the redox state of an uncharacterized receptor-like kinase, named THIOREDOXIN INTERACTING RECEPTOR KINASE (TIRK), also induced by mite herbivory. Feeding bioassays performed withTRXh5 over-expression plants result in lower leaf damage and reduced egg accumulation after T. urticae infestation than in wild-type (WT) plants. In contrast, mites cause a more severe injury in trxh5 mutant lines where a greater number of eggs accumulates. Likewise, analysis of TIRK-gain and -loss-of-function lines demonstrate the defence role of this receptor in Arabidopsis against T. urticae. Altogether, our findings demonstrate the interaction between TRXh5 and TIRK and highlight the importance of TRXh5 and TIRK in the establishment of effective Arabidopsis defences against spider mite herbivory.


Assuntos
Arabidopsis , Tetranychidae , Animais , Arabidopsis/genética , Tetranychidae/genética , Plantas , Tiorredoxinas/genética , Homeostase
2.
J Exp Bot ; 74(19): 5970-5988, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37668424

RESUMO

Deterioration and impoverishment of soil, caused by environmental pollution and climate change, result in reduced crop productivity. To adapt to hostile soils, plants have developed a complex network of factors involved in stress sensing, signal transduction, and adaptive responses. The chemical properties of reactive oxygen species (ROS) and reactive nitrogen species (RNS) allow them to participate in integrating the perception of external signals by fine-tuning protein redox regulation and signal transduction, triggering specific gene expression. Here, we update and summarize progress in understanding the mechanistic basis of ROS and RNS production at the subcellular level in plants and their role in the regulation of ion channels/transporters at both transcriptional and post-translational levels. We have also carried out an in silico analysis of different redox-dependent modifications of ion channels/transporters and identified cysteine and tyrosine targets of nitric oxide in metal transporters. Further, we summarize possible ROS- and RNS-dependent sensors involved in metal stress sensing, such as kinases and phosphatases, as well as some ROS/RNS-regulated transcription factors that could be involved in metal homeostasis. Understanding ROS- and RNS-dependent signaling events is crucial to designing new strategies to fortify crops and improve plant tolerance of nutritional imbalance and metal toxicity.


Assuntos
Óxido Nítrico , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Plantas/metabolismo , Oxirredução , Metais/metabolismo , Canais Iônicos/metabolismo
4.
Antioxidants (Basel) ; 12(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37507861

RESUMO

Plants continuously interact with fungi, some of which, such as Fusarium oxysporum, are lethal, leading to reduced crop yields. Recently, nitric oxide (NO) has been found to play a regulatory role in plant responses to F. oxysporum, although the underlying mechanisms involved are poorly understood. In this study, we show that Arabidopsis mutants with altered levels of phytoglobin 1 (Glb1) have a higher survival rate than wild type (WT) after infection with F. oxysporum, although all the genotypes analyzed exhibited a similar fungal burden. None of the defense responses that were analyzed in Glb1 lines, such as phenols, iron metabolism, peroxidase activity, or reactive oxygen species (ROS) production, appear to explain their higher survival rates. However, the early induction of the PR genes may be one of the reasons for the observed survival rate of Glb1 lines infected with F. oxysporum. Furthermore, while PR1 expression was induced in Glb1 lines very early on the response to F. oxysporum, this induction was not observed in WT plants.

5.
Free Radic Biol Med ; 197: 58-70, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642282

RESUMO

Plant peroxisomes are highly dynamic organelles with regard to metabolic pathways, number and morphology and participate in different metabolic processes and cell responses to their environment. Peroxisomes from animal and plant cells house a complex system of reactive oxygen species (ROS) production associated to different metabolic pathways which are under control of an important set of enzymatic and non enzymatic antioxidative defenses. Nitric oxide (NO) and its derivate reactive nitrogen species (RNS) are also produced in these organelles. Peroxisomes can regulate ROS and NO/RNS levels to allow their role as signalling molecules. The metabolism of other reactive species such as carbonyl reactive species (CRS) and sulfur reactive species (SRS) in peroxisomes and their relationship with ROS and NO have not been explored in depth. In this review, we define a peroxisomal reactive species interactome (PRSI), including all reactive species ROS, RNS, CRS and SRS, their interaction and effect on target molecules contributing to the dynamic redox/ROS homeostasis and plasticity of peroxisomes, enabling fine-tuned regulation of signalling networks associated with peroxisome-dependent H2O2. Particular attention will be paid to update the information available on H2O2-dependent peroxisomal retrograde signalling and to discuss a specific peroxisomal footprint.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Antioxidantes/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Óxido Nítrico/metabolismo , Peroxissomos/metabolismo
6.
Front Plant Sci ; 13: 930721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082297

RESUMO

Reactive oxygen species (ROS) act as secondary messengers that can be sensed by specific redox-sensitive proteins responsible for the activation of signal transduction culminating in altered gene expression. The subcellular site, in which modifications in the ROS/oxidation state occur, can also act as a specific cellular redox network signal. The chemical identity of ROS and their subcellular origin is actually a specific imprint on the transcriptome response. In recent years, a number of transcriptomic studies related to altered ROS metabolism in plant peroxisomes have been carried out. In this study, we conducted a meta-analysis of these transcriptomic findings to identify common transcriptional footprints for plant peroxisomal-dependent signaling at early and later time points. These footprints highlight the regulation of various metabolic pathways and gene families, which are also found in plant responses to several abiotic stresses. Major peroxisomal-dependent genes are associated with protein and endoplasmic reticulum (ER) protection at later stages of stress while, at earlier stages, these genes are related to hormone biosynthesis and signaling regulation. Furthermore, in silico analyses allowed us to assign human orthologs to some of the peroxisomal-dependent proteins, which are mainly associated with different cancer pathologies. Peroxisomal footprints provide a valuable resource for assessing and supporting key peroxisomal functions in cellular metabolism under control and stress conditions across species.

7.
J Hazard Mater ; 429: 128217, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35077969

RESUMO

NADPH oxidase, an enzyme associated with the plasma membrane, constitutes one of the main sources of reactive oxygen species (ROS) which regulate different developmental and adaptive responses in plants. In this work, the involvement of NADPH oxidases in the regulation of photosynthesis and cell ionic homeostasis in response to short cadmium exposure was compared between wild type (WT) and three RBOHs (Respiratory Burst Oxidase Homologues) Arabidopsis mutants (AtrbohC, AtrbohD, and AtrbohF). Plants were grown under hydroponic conditions and supplemented with 50 µM CdCl2 for 24 h. Cadmium treatment differentially affected photosynthesis, stomatal conductance, transpiration, and antioxidative responses in WT and Atrbohs mutants. The loss of function of RBOH isoforms resulted in higher Cd2+ influx, mainly in the elongation zone of roots, which was more evident in AtrbohD and AtrbohF mutants. In the mature zone, the highest Cd2+ influx was observed in rbohC mutant. The lack of functional RBOH isoforms also resulted in altered patterns of net K+ transport across cellular membranes, both in the root epidermis and leaf mesophyll. The analysis of expression of metal transporters by qPCR demonstrated that a loss of functional RBOH isoforms has altered transcript levels for metal NRAMP3, NRAMP6 and IRT1 and the K+ transporters outward-rectifying K+ efflux GORK channel, while RBOHD specifically regulated transcripts for high-affinity K+ transporters KUP8 and HAK5, and IRT1 and RBOHD and F regulated the transcription factors TGA3 and TGA10. It is concluded that RBOH-dependent H2O2 regulation of ion homeostasis and Cd is a highly complex process involving multilevel regulation from transpirational water flow to transcriptional and posttranslational modifications of K/metals transporters.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Homeostase , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/genética , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
J Exp Bot ; 73(2): 584-595, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34131708

RESUMO

Volatile compounds (VCs) of Trichoderma fungi trigger induced systemic resistance (ISR) in Arabidopsis that is effective against a broad spectrum of pathogens. The root-specific transcription factor MYB72 is an early regulator of ISR and also controls the activation of iron-deficiency responses. Nitric oxide (NO) is involved in the regulation of MYB72-dependent iron-deficiency responses in Arabidopsis roots, but the role of NO in the regulation of MYB72 and ISR by Trichoderma VCs remains unexplored. Using in vitro bioassays, we applied Trichoderma VCs to Arabidopsis seedlings. Plant perception of Trichoderma VCs triggered a burst of NO in Arabidopsis roots. By suppressing this burst using an NO scavenger, we show the involvement of NO in Trichoderma VCs-mediated regulation of MYB72 expression. Using an NO scavenger and the Arabidopsis lines myb72 and nia1nia2 in in planta bioassays, we demonstrate that NO signalling is required in the roots for activation of Trichoderma VCs-mediated ISR against the leaf pathogen Botrytis cinerea. Analysis of the defence-related genes PR1 and PDF1.2 points to the involvement of root NO in priming leaves for enhanced defence. Our results support a key role of root NO signalling in the regulation of MYB72 expression during the activation of ISR by Trichoderma VCs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Trichoderma , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Óxido Nítrico , Doenças das Plantas , Raízes de Plantas/metabolismo , Trichoderma/metabolismo
9.
Plant Cell Environ ; 45(2): 572-590, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800292

RESUMO

The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) functions as an agronomic weed control herbicide. High concentrations of 2,4-D induce plant growth defects, particularly leaf epinasty and stem curvature. Although the 2,4-D triggered reactive oxygen species (ROS) production, little is known about its signalling. In this study, by using a null mutant in peroxisomal acyl CoA oxidase 1 (acx1-2), we identified acyl-coenzyme A oxidase 1 (ACX1) as one of the main sources of ROS production and, in part, also causing the epinastic phenotype following 2,4-D application. Transcriptomic analyses of wild type (WT) plants after treatment with 2,4-D revealed a ROS-related peroxisomal footprint in early plant responses, while other organelles, such as mitochondria and chloroplasts, are involved in later responses. Interestingly, a group of 2,4-D-responsive ACX1-dependent transcripts previously associated with epinasty is related to auxin biosynthesis, metabolism, and signalling. We found that the auxin receptor auxin signalling F-box 3 (AFB3), a component of Skp, Cullin, F-box containing complex (SCF) (ASK-cullin-F-box) E3 ubiquitin ligase complexes, which mediates auxin/indole acetic acid (AUX/IAA) degradation by the 26S proteasome, acts downstream of ACX1 and is involved in the epinastic phenotype induced by 2,4-D. We also found that protein degradation associated with ubiquitin E3-RING and E3-SCF-FBOX in ACX1-dependent signalling in plant responses to 2,4-D is significantly regulated over longer treatment periods.


Assuntos
Ácido 2,4-Diclorofenoxiacético/efeitos adversos , Arabidopsis/efeitos dos fármacos , Herbicidas/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Arabidopsis/fisiologia
10.
Front Plant Sci ; 12: 698912, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239533

RESUMO

Bacteria release a wide range of volatile compounds that play important roles in intermicrobial and interkingdom communication. Volatile metabolites emitted by rhizobacteria can promote plant growth and increase plant resistance to both biotic and abiotic stresses. Rhizobia establish beneficial nitrogen-fixing symbiosis with legume plants in a process starting with a chemical dialog in the rhizosphere involving various diffusible compounds. Despite being one of the most studied plant-interacting microorganisms, very little is known about volatile compounds produced by rhizobia and their biological/ecological role. Evidence indicates that plants can perceive and respond to volatiles emitted by rhizobia. In this perspective, we present recent data that open the possibility that rhizobial volatile compounds have a role in symbiotic interactions with legumes and discuss future directions that could shed light onto this area of investigation.

11.
Physiol Plant ; 173(3): 1189-1206, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34331344

RESUMO

Arsenic in groundwater constitutes an agronomic problem due to its potential accumulation in the food chain. Among the agro-sustainable tools to reduce metal(oid)s toxicity, the use of plant growth-promoting bacteria (PGPB) becomes important. For that, and based on previous results in which significant differences of As translocation were observed when inoculating maize plants with Az39 or CD Azospirillum strains, we decided to decipher the redox metabolism changes and the antioxidant system response of maize plants inoculated when exposed to a realistic arsenate (AsV ) dose. Results showed that AsV caused morphological changes in the root exodermis. Photosynthetic pigments decreased only in CD inoculated plants, while oxidative stress evidence was detected throughout the plant, regardless of the assayed strain. The antioxidant response was strain-differential since only CD inoculated plants showed an increase in superoxide dismutase, glutathione S-transferase (GST), and glutathione reductase (GR) activities while other enzymes showed the same behavior irrespective of the inoculated strain. Gene expression assays reported that only GST23 transcript level was upregulated by arsenate, regardless of the inoculated strain. AsV diminished the glutathione (GSH) content of roots inoculated with the Az39 strain, and CD inoculated plants showed a decrease of oxidized GSH (GSSG) levels. We suggest a model in which the antioxidant response of the maize-diazotrophs system is modulated by the strain and that GSH plays a central role acting mainly as a substrate for GST. These findings generate knowledge for a suitable PGPB selection, and its scaling to an effective bioinoculant formulation for maize crops exposed to adverse environmental conditions.


Assuntos
Arsênio , Azospirillum brasilense , Água Subterrânea , Arsênio/toxicidade , Oxirredução , Raízes de Plantas , Zea mays
12.
J Exp Bot ; 72(16): 5857-5875, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34111283

RESUMO

Complex signalling pathways are involved in plant protection against single and combined stresses. Plants are able to coordinate genome-wide transcriptional reprogramming and display a unique programme of transcriptional responses to a combination of stresses that differs from the response to single stresses. However, a significant overlap between pathways and some defence genes in the form of shared and general stress-responsive genes appears to be commonly involved in responses to multiple biotic and abiotic stresses. Reactive oxygen and nitrogen species, as well as redox signals, are key molecules involved at the crossroads of the perception of different stress factors and the regulation of both specific and general plant responses to biotic and abiotic stresses. In this review, we focus on crosstalk between plant responses to biotic and abiotic stresses, in addition to possible plant protection against pathogens caused by previous abiotic stress. Bioinformatic analyses of transcriptome data from cadmium- and fungal pathogen-treated plants focusing on redox gene ontology categories were carried out to gain a better understanding of common plant responses to abiotic and biotic stresses. The role of reactive oxygen and nitrogen species in the complex network involved in plant responses to changes in their environment is also discussed.


Assuntos
Cádmio , Regulação da Expressão Gênica de Plantas , Cádmio/toxicidade , Oxirredução , Plantas/genética , Estresse Fisiológico
14.
Physiol Plant ; 173(1): 180-190, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33496968

RESUMO

Heavy metal concentrations, which have been increasing over the last 200 years, affect soil quality and crop yields. These elements are difficult to eliminate from soils and may constitute a human health hazard by entering the food chain. Recently, we obtained a selection of mutants with different degrees of tolerance to a mixture of heavy metals (HMmix) in order to gain a deeper insight into the underlying mechanism regulating plant responses to these elements. In this study, we characterized the mutant obtained Atkup8 (in this work, Atkup8-2), which showed one of the most resistant phenotypes, as determined by seedling root length. Atkup8-2 is affected in the potassium transporter KUP8, a member of the high-affinity K+ uptake family KUP/HAK/KT. Atkup8-2 mutants, which are less affected as measured by seedling root length under HMmix conditions, showed a resistant phenotype with respect to WT seedlings which, despite their delayed growth, are able to develop true leaves at levels similar to those under control conditions. Adult Atkup8-2 plants had a higher fresh weight than WT plants, a resistant phenotype under HMmix stress conditions and lower levels of oxidative damage. KUP8 did not appear to be involved in heavy metal or macro- and micro-nutrient uptake and translocation from roots to leaves, as total concentrations of these elements were similar in both Atkup8-2 and WT plants. However, alterations in cellular K+ homeostasis in this mutant cannot be ruled out.


Assuntos
Metais Pesados , Potássio , Regulação da Expressão Gênica de Plantas , Metais Pesados/toxicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas/metabolismo , Potássio/metabolismo
15.
Chemosphere ; 259: 127410, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32615455

RESUMO

Arsenic (As) can be present naturally in groundwater from peanut fields, constituting a serious problem, as roots can accumulate and mobilize the metalloid to their edible parts. Understanding the redox changes in the legume exposed to As may help to detect potential risks to human health and recognize tolerance mechanisms. Thirty-days old peanut plants inoculated with Bradyrhizobium sp. strains (SEMIA6144 or C-145) were exposed to a realistic arsenate concentration, in order to unravel the redox response and characterize the oxidative stress indexes. Thus, root anatomy, reactive oxygen species detection by fluorescence microscopy and, ROS histochemical staining along with the NADPH oxidase activity were analyzed. Besides, photosynthetic pigments and damage to lipids and proteins were determined as oxidative stress indicators. Results showed that at 3 µM AsV, the cross-section areas of peanut roots were augmented; NADPH oxidase activity was significantly increased and O2˙¯and H2O2 accumulated in leaves and roots. Likewise, an increase in the lipid peroxidation and protein carbonyls was also observed throughout the plant regardless the inoculated strain, while chlorophylls and carotenes were increased only in those inoculated with Bradyrhizobium sp. C-145. Interestingly, the oxidative burst, mainly induced by the NADPH oxidase activity, and the consequent oxidative stress was strain-dependent and organ-differential. Additionally, As modifies the root anatomy, acting as a possibly first defense mechanism against the metalloid entry. All these findings allowed us to conclude that the redox response of peanut is conditioned by the rhizobial strain, which contributes to the importance of effectively formulating bioinoculants for this crop.


Assuntos
Arachis/microbiologia , Arsênio/toxicidade , Bradyrhizobium/fisiologia , Estresse Oxidativo/fisiologia , Arachis/efeitos dos fármacos , Arachis/metabolismo , Arachis/fisiologia , Arseniatos , Arsênio/metabolismo , Bradyrhizobium/efeitos dos fármacos , Bradyrhizobium/metabolismo , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Oxirredução , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Simbiose/efeitos dos fármacos
16.
Plant Cell Environ ; 43(10): 2492-2507, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32692422

RESUMO

Nitric oxide (NO) and nitrosylated derivatives are produced in peroxisomes, but the impact of NO metabolism on organelle functions remains largely uncharacterised. Double and triple NO-related mutants expressing cyan florescent protein (CFP)-SKL (nox1 × px-ck and nia1 nia2 × px-ck) were generated to determine whether NO regulates peroxisomal dynamics in response to cadmium (Cd) stress using confocal microscopy. Peroxule production was compromised in the nia1 nia2 mutants, which had lower NO levels than the wild-type plants. These findings show that NO is produced early in the response to Cd stress and was involved in peroxule production. Cd-induced peroxisomal proliferation was analysed using electron microscopy and by the accumulation of the peroxisomal marker PEX14. Peroxisomal proliferation was inhibited in the nia1 nia2 mutants. However, the phenotype was recovered by exogenous NO treatment. The number of peroxisomes and oxidative metabolism were changed in the NO-related mutant cells. Furthermore, the pattern of oxidative modification and S-nitrosylation of the catalase (CAT) protein was changed in the NO-related mutants in both the absence and presence of Cd stress. Peroxisome-dependent signalling was also affected in the NO-related mutants. Taken together, these results show that NO metabolism plays an important role in peroxisome functions and signalling.


Assuntos
Arabidopsis/metabolismo , Cádmio/metabolismo , Óxido Nítrico/fisiologia , Peroxissomos/metabolismo , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Western Blotting , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Microscopia Confocal , Óxido Nítrico/metabolismo , Peroxissomos/ultraestrutura , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real
18.
Front Plant Sci ; 11: 620086, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488661

RESUMO

Reactive nitrogen species (RNS), mainly nitric oxide (NO), are highly reactive molecules with a prominent role in plant response to numerous stresses including herbivores, although the information is still very limited. This perspective article compiles the current progress in determining the NO function, as either a signal molecule, a metabolic intermediate, or a toxic oxidative product, as well as the contribution of molecules associated with NO metabolic pathway in the generation of plant defenses against phytophagous arthropods, in particular to insects and acari.

19.
Environ Pollut ; 256: 113411, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31672356

RESUMO

Cadmium (Cd), which is a toxic non-essential heavy metal capable of entering plants and thus the food chain, constitutes a major environmental and health concern worldwide. An understanding of the tools used by plants to overcome Cd stress could lead to the production of food crops with lower Cd uptake capacity and of plants with greater Cd uptake potential for phytoremediation purposes in order to restore soil efficiency in self-sustaining ecosystems. The signalling molecule nitric oxide (NO), whose function remains unclear, has recently been involved in responses to Cd stress. Using different mutants, such as nia1nia2, nox1, argh1-1 and Atnoa1, which were altered in NO metabolism, we analysed various parameters related to reactive oxygen and nitrogen species (ROS/RNS) metabolism and seedling fitness following germination and growth under Cd treatment conditions for seven days. Seedling roots were the most affected, with an increase in ROS and RNS observed in wild type (WT) seedling roots, leading to increased oxidative damage and fitness loss. Mutants that showed lower NO levels in seedling roots under Cd stress were more resistant than WT seedlings due to the maintenance of antioxidant systems which protect against oxidative damage.


Assuntos
Antioxidantes/metabolismo , Arabidopsis/metabolismo , Óxidos de Nitrogênio/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Ecossistema , Germinação , Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo , Raízes de Plantas/metabolismo , Plântula/metabolismo
20.
Int J Mol Sci ; 20(19)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581473

RESUMO

Peroxisomes, which are ubiquitous organelles in all eukaryotes, are highly dynamic organelles that are essential for development and stress responses. Plant peroxisomes are involved in major metabolic pathways, such as fatty acid ß-oxidation, photorespiration, ureide and polyamine metabolism, in the biosynthesis of jasmonic, indolacetic, and salicylic acid hormones, as well as in signaling molecules such as reactive oxygen and nitrogen species (ROS/RNS). Peroxisomes are involved in the perception of environmental changes, which is a complex process involving the regulation of gene expression and protein functionality by protein post-translational modifications (PTMs). Although there has been a growing interest in individual PTMs in peroxisomes over the last ten years, their role and cross-talk in the whole peroxisomal proteome remain unclear. This review provides up-to-date information on the function and crosstalk of the main peroxisomal PTMs. Analysis of whole peroxisomal proteomes shows that a very large number of peroxisomal proteins are targeted by multiple PTMs, which affect redox balance, photorespiration, the glyoxylate cycle, and lipid metabolism. This multilevel PTM regulation could boost the plasticity of peroxisomes and their capacity to regulate metabolism in response to environmental changes.


Assuntos
Peroxissomos/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma , Óxido Nítrico/metabolismo , Oxirredução , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...