Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 292: 133445, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34968522

RESUMO

Despite their remoteness, deep-sea species bioaccumulate mercury, mostly in the form of the neurotoxin methylmercury (MeHg). Although the concentration of MeHg in the water column is known to increase with depth down to a maximum found at the base of the permanent thermocline, the knowledge of the relationship between MeHg content in marine species and their depth of occurrence is limited. We analyzed total mercury (THg) and MeHg concentrations in 25 species of fish inhabiting the Avilés Submarine Canyon and its adjacent shelf (Cantabrian Sea, North-East Atlantic) between 50 and 1868 m depth. THg concentrations ranged from 0.03 µg g-1 in wet weight (ww) in Chauliodus sloani and 4.0 µg g-1 ww in Coryphaenoides guentheri. 65% of the species analyzed exceeded 0.5 µg g-1 ww of MeHg, the maximum level for safe consumption recommended by FAO/WHO. THg and MeHg contents in muscle tissue increased with the depth of occurrence of fish and was influenced by their habitat so that demersal species had higher THg content than pelagic species inhabiting the same depth. MeHg accounted for an average 76 ± 3.9% of THg (mean ± SD), which is lower than that reported for other fish communities and can be explained by the high concentration of Hg present in sediments of the Nalón estuary, which discharges right off the Avilés Canyon head. The % of THg as MeHg was also strongly correlated with δ15N values, confirming that MeHg can be an indicator of the trophic identity of a species within the food web.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Peixes , Cadeia Alimentar , Mercúrio/análise , Poluentes Químicos da Água/análise
2.
Sci Rep ; 11(1): 12594, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131174

RESUMO

Trophic ecology of detrital-based food webs is still poorly understood. Abyssal plains depend entirely on detritus and are among the most understudied ecosystems, with deposit feeders dominating megafaunal communities. We used compound-specific stable isotope ratios of amino acids (CSIA-AA) to estimate the trophic position of three abundant species of deposit feeders collected from the abyssal plain of the Northeast Pacific (Station M; ~ 4000 m depth), and compared it to the trophic position of their gut contents and the surrounding sediments. Our results suggest that detritus forms the base of the food web and gut contents of deposit feeders have a trophic position consistent with primary consumers and are largely composed of a living biomass of heterotrophic prokaryotes. Subsequently, deposit feeders are a trophic level above their gut contents making them secondary consumers of detritus on the abyssal plain. Based on δ13C values of essential amino acids, we found that gut contents of deposit feeders are distinct from the surrounding surface detritus and form a unique food source, which was assimilated by the deposit feeders primarily in periods of low food supply. Overall, our results show that the guts of deposit feeders constitute hotspots of organic matter on the abyssal plain that occupy one trophic level above detritus, increasing the food-chain length in this detritus-based ecosystem.

3.
Limnol Oceanogr ; 64(4): 1473-1483, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31598007

RESUMO

Many species of micronekton perform diel vertical migrations (DVMs), which ultimately contributes to carbon export to the deep sea. However, not all micronekton species perform DVM, and the nonmigrators, which are often understudied, have different energetic requirements that might be reflected in their trophic ecology. We analyze bulk tissue and whole animal stable nitrogen isotopic compositions (δ 15N values) of micronekton species collected seasonally between 0 and 1250 m depth to explore differences in the trophic ecology of vertically migrating and nonmigrating micronekton in the central North Pacific. Nonmigrating species exhibit depth-related increases in δ 15N values mirroring their main prey, zooplankton. Higher variance in δ 15N values of bathypelagic species points to the increasing reliance of deeper dwelling micronekton on microbially reworked, very small suspended particles. Migrators have higher δ 15N values than nonmigrators inhabiting the epipelagic zone, suggesting the consumption of material during the day at depth, not only at night when they migrate closer to the surface. Migrating species also appear to eat larger prey and exhibit a higher range of variation in δ 15N values seasonally than nonmigrators, likely because of their higher energy needs. The dependence on material at depth enriched in 15N relative to surface particles is higher in migratory fish that ascend only to the lower epipelagic zone. Our results confirm that stark differences in the food habits and dietary sources of micronekton species are driven by vertical migrations.

4.
Sci Total Environ ; 605-606: 589-597, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28672247

RESUMO

Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) were measured in a temperate, deep-sea ecosystem, the Avilés submarine Canyon (AC; Cantabrian Sea, Southern Bay of Biscay). There was an increase of contaminant concentration with the trophic level of the organisms, as calculated from stable nitrogen isotope data (δ15N). Such biomagnification was only significant for the pelagic food web and its magnitude was highly dependent on the type of top predators included in the analysis. The trophic magnification factor (TMF) for PCB-153 in the pelagic food web (spanning four trophic levels) was 6.2 or 2.2, depending on whether homeotherm top predators (cetaceans and seabirds) were included or not in the analysis, respectively. Since body size is significantly correlated with δ15N, it can be used as a proxy to estimate trophic magnification, what can potentially lead to a simple and convenient method to calculate the TMF. In spite of their lower biomagnification, deep-sea fishes showed higher concentrations than their shallower counterparts, although those differences were not significant. In summary, the AC fauna exhibits contaminant levels comparable or lower than those reported in other systems.

5.
Ecology ; 97(1): 171-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27008786

RESUMO

Nitrogen stable isotope ratios (δ15N) and body size were used to describe the size-based trophic structure of a deep-sea ecosystem, the Avilés submarine Canyon (Cantabrian Sea, Southern Bay of Biscay). We analyzed δ15N of specimens collected on a seasonal basis (March 2012, October 2012, and May 2013), from a variety of zones (benthic, pelagic), taxa (from zooplankton through invertebrates and fishes to giant squids and cetaceans), or depths (from surface to 4700 m) that spanned nine orders of magnitude in body mass. Our data reveal a strong linear dependence of trophic level on body size when data were considered either individually, aggregated into taxonomical categories, or binned into size classes. The three approaches render similar results that were not significantly different and yielded predator:prey body mass ratios (PPMR) of 1156:1, 3792:1 and 2718:1, respectively. Thus, our data represent unequivocal evidence of interspecific, size-based trophic structure of a whole ecosystem based on taxonomic/functional categories. We studied the variability in δ15N not explained by body mass (W) using linear mixed modeling and found that the δ15N vs. log10 W relationship holds for both pelagic and benthic systems, with benthic organisms isotopically enriched relative to pelagic organisms of the same size. However there is a marked seasonal variation potentially related to the recycling state of the system.


Assuntos
Baías , Tamanho Corporal/fisiologia , Cadeia Alimentar , Invertebrados/fisiologia , Comportamento Predatório/fisiologia , Vertebrados/fisiologia , Animais
6.
PLoS One ; 8(11): e81073, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260535

RESUMO

Avoidance response is a well-known mechanism for escaping environmental stress. For organisms with reduced active movement, such as benthic microalgae, drifting could be a specifically selected mean of avoiding less favorable environments. To test this hypothesis, a system was developed to assess if hypo-saline stress triggers drift in the estuarine benthic diatom Cylindrotheca closterium. Concurrently, the effects of salinity on growth inhibition were also investigated in order to compare the sensitivity of this endpoint with the drift response, and to estimate the immediate population decline caused by both drift and population growth responses. It was verified that the salinity value that inhibited the algal population growth by 50% (IGS50) was 19, while the salinity value that triggered the drift response by 50% of the population (TDS50) was 15. These results indicate that drift is an identifiable response triggered to escape stressful environments. The combination of the two responses (population growth and drift) showed that population decline based exclusively on the inhibition of population growth may result in an underestimation of the risk, compared with the decline when drifting to avoid stress is also taken into account.


Assuntos
Diatomáceas/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Bioensaio , Diatomáceas/crescimento & desenvolvimento , Estuários , Movimento/efeitos dos fármacos , Movimento/fisiologia , Dinâmica Populacional , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...