Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 15(42): e1904136, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31460707

RESUMO

Atomic force microscopy rheological measurements (Rheo-AFM) of the linear viscoelastic properties of single, charged colloids having a star-like architecture with a hard core and an extended, deformable double-stranded DNA (dsDNA) corona dispersed in aqueous saline solutions are reported. This is achieved by analyzing indentation and relaxation experiments performed on individual colloidal particles by means of a novel model-free Fourier transform method that allows a direct evaluation of the frequency-dependent linear viscoelastic moduli of the system under investigation. The method provides results that are consistent with those obtained via a conventional fitting procedure of the force-relaxation curves based on a modified Maxwell model. The outcomes show a pronounced softening of the dsDNA colloids, which is described by an exponential decay of both the Young's and the storage modulus as a function of the salt concentration within the dispersing medium. The strong softening is related to a critical reduction of the size of the dsDNA corona, down to ≈70% of its size in a salt-free solution. This can be correlated to significant topological changes of the dense star-like polyelectrolyte forming the corona, which are induced by variations in the density profile of the counterions. Similarly, a significant reduction of the stiffness is obtained by increasing the length of the dsDNA chains, which we attribute to a reduction of the DNA density in the outer region of the corona.


Assuntos
Coloides/química , DNA/química , Elasticidade , Microscopia de Força Atômica , Reologia , Módulo de Elasticidade , Sais/química , Fatores de Tempo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA