Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 41(34): 7182-7196, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34253625

RESUMO

Up states are the best studied example of an emergent neural dynamic regime. Computational models based on a single class of inhibitory neurons indicate that Up states reflect bistable dynamic systems in which positive feedback is stabilized by strong inhibition and predict a paradoxical effect in which increased drive to inhibitory neurons results in decreased inhibitory activity. To date, however, computational models have not incorporated empirically defined properties of parvalbumin (PV) and somatostatin (SST) neurons. Here we first experimentally characterized the frequency-current (F-I) curves of pyramidal (Pyr), PV, and SST neurons from mice of either sex, and confirmed a sharp difference between the threshold and slopes of PV and SST neurons. The empirically defined F-I curves were incorporated into a three-population computational model that simulated the empirically derived firing rates of pyramidal, PV, and SST neurons. Simulations revealed that the intrinsic properties were sufficient to predict that PV neurons are primarily responsible for generating the nontrivial fixed points representing Up states. Simulations and analytical methods demonstrated that while the paradoxical effect is not obligatory in a model with two classes of inhibitory neurons, it is present in most regimes. Finally, experimental tests validated predictions of the model that the Pyr ↔ PV inhibitory loop is stronger than the Pyr ↔ SST loop.SIGNIFICANCE STATEMENT Many cortical computations, such as working memory, rely on the local recurrent excitatory connections that define cortical circuit motifs. Up states are among the best studied examples of neural dynamic regimes that rely on recurrent excitatory excitation. However, this positive feedback must be held in check by inhibition. To address the relative contribution of PV and SST neurons, we characterized the intrinsic input-output differences between these classes of inhibitory neurons and, using experimental and theoretical methods, show that the higher threshold and gain of PV leads to a dominant role in network stabilization.


Assuntos
Neurônios/fisiologia , Potenciais de Ação , Animais , Simulação por Computador , Retroalimentação Fisiológica , Camundongos , Modelos Neurológicos , Neurônios/química , Neurônios/classificação , Optogenética , Parvalbuminas/análise , Células Piramidais/química , Células Piramidais/fisiologia , Somatostatina/análise , Transfecção
2.
PLoS One ; 15(1): e0221000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31905200

RESUMO

A key feature of the brain's ability to tell time and generate complex temporal patterns is its capacity to produce similar temporal patterns at different speeds. For example, humans can tie a shoe, type, or play an instrument at different speeds or tempi-a phenomenon referred to as temporal scaling. While it is well established that training improves timing precision and accuracy, it is not known whether expertise improves temporal scaling, and if so, whether it generalizes across skill domains. We quantified temporal scaling and timing precision in musicians and non-musicians as they learned to tap a Morse code sequence. We found that non-musicians improved significantly over the course of days of training at the standard speed. In contrast, musicians exhibited a high level of temporal precision on the first day, which did not improve significantly with training. Although there was no significant difference in performance at the end of training at the standard speed, musicians were significantly better at temporal scaling-i.e., at reproducing the learned Morse code pattern at faster and slower speeds. Interestingly, both musicians and non-musicians exhibited a Weber-speed effect, where temporal precision at the same absolute time was higher when producing patterns at the faster speed. These results are the first to establish that the ability to generate the same motor patterns at different speeds improves with extensive training and generalizes to non-musical domains.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Música , Desempenho Psicomotor/fisiologia , Estimulação Acústica , Acústica , Adulto , Feminino , Humanos , Aprendizagem/fisiologia , Modelos Lineares , Masculino
3.
Nat Commun ; 9(1): 4732, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413692

RESUMO

Timing is fundamental to complex motor behaviors: from tying a knot to playing the piano. A general feature of motor timing is temporal scaling: the ability to produce motor patterns at different speeds. One theory of temporal processing proposes that the brain encodes time in dynamic patterns of neural activity (population clocks), here we first examine whether recurrent neural network (RNN) models can account for temporal scaling. Appropriately trained RNNs exhibit temporal scaling over a range similar to that of humans and capture a signature of motor timing, Weber's law, but predict that temporal precision improves at faster speeds. Human psychophysics experiments confirm this prediction: the variability of responses in absolute time are lower at faster speeds. These results establish that RNNs can account for temporal scaling and suggest a novel psychophysical principle: the Weber-Speed effect.


Assuntos
Modelos Biológicos , Atividade Motora/fisiologia , Adolescente , Humanos , Redes Neurais de Computação , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA