Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Thyroid ; 29(10): 1425-1437, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31298630

RESUMO

Background: Thyroid tumor progression from well-differentiated cancer to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) involves step-wise dedifferentiation associated with loss of iodine avidity and poor outcomes. ALK fusions, typically STRN-ALK, are found with higher incidence in human PDTC compared with well-differentiated cancer and, as previously shown, can drive the development of murine PDTC. The aim of this study was to evaluate thyroid cancer initiation and progression in mice with concomitant expression of STRN-ALK and inactivation of the tumor suppressor p53 (Trp53) in thyroid follicular cells. Methods: Transgenic mice with thyroid-specific expression of STRN-ALK and biallelic p53 loss were generated and aged on a regular diet or with methimazole and sodium perchlorate goitrogen treatment. Development and progression of thyroid tumors were monitored by using ultrasound imaging, followed by detailed histological and immunohistochemical evaluation. Gene expression analysis was performed on selected tumor samples by using RNA-Seq and quantitative RT-PCR. Results: In mice treated with goitrogen, the first thyroid cancers appeared at 6 months of age, reaching 86% penetrance by the age of 12 months, while a similar rate (71%) of tumor occurrence in mice on regular diet was observed by 18 months of age. Histological examination revealed well-differentiated papillary thyroid carcinomas (PTC) (n = 26), PDTC (n = 21), and ATC (n = 8) that frequently coexisted in the same thyroid gland. The tumors were frequently lethal and associated with the development of lung metastasis in 24% of cases. Histological and immunohistochemical characteristics of these cancers recapitulated tumors seen in humans. Detailed analysis of PDTC revealed two tumor types with distinct cell morphology and immunohistochemical characteristics, designated as PDTC type 1 (PDTC1) and type 2 (PDTC2). Gene expression analysis showed that PDTC1 tumors retained higher expression of thyroid differentiation genes including Tg and Slc5a5 (Nis) as compared with PDTC2 tumors. Conclusions: In this study, we generated a new mouse model of multistep thyroid cancer dedifferentiation with evidence of progression from PTC to PDTC and ATC. Further, PDTC in these mice showed two distinct histologic appearances correlated with levels of expression of thyroid differentiation and iodine metabolism genes, suggesting a possibility of existence of two PDTC types with different functional characteristics and potential implication for therapeutic approaches to these tumors.


Assuntos
Quinase do Linfoma Anaplásico/genética , Proteínas de Ligação a Calmodulina/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Fusão Oncogênica/genética , Câncer Papilífero da Tireoide/patologia , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Proteína Supressora de Tumor p53/genética , Animais , Antitireóideos/toxicidade , Desdiferenciação Celular/genética , Diferenciação Celular/genética , Modelos Animais de Doenças , Progressão da Doença , Metimazol/toxicidade , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Percloratos/toxicidade , RNA-Seq , Compostos de Sódio/toxicidade , Simportadores/genética , Tireoglobulina/genética , Câncer Papilífero da Tireoide/induzido quimicamente , Câncer Papilífero da Tireoide/genética , Carcinoma Anaplásico da Tireoide/induzido quimicamente , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/induzido quimicamente , Neoplasias da Glândula Tireoide/genética , Transcriptoma
2.
Am J Pathol ; 188(11): 2653-2661, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125543

RESUMO

Chromosomal rearrangements of the ALK gene, which lead to constitutive activation of ALK tyrosine kinase, are found in various cancers. In thyroid cancers, ALK fusions, most commonly the STRN-ALK fusion, are detected in papillary thyroid cancer and with higher frequency in poorly differentiated and anaplastic thyroid cancers. Our aim was to establish a mouse model of thyroid-specific expression of STRN-ALK and to test whether this fusion drives the development of thyroid cancer with a propensity for dedifferentiation. Transgenic Tg-STRN-ALK mice with thyroglobulin-controlled expression of STRN-ALK were generated and aged with or without goitrogen treatment. Thyroids from these mice were subjected to histologic and immunohistochemical analysis. Transgenic mice with thyroid-specific expression of STRN-ALK developed poorly differentiated thyroid tumors by the age of 12 months in 22% of mice without goitrogen treatment and in 36% of mice with goitrogen treatment. Histologically and immunohistochemically, the tumors resembled poorly differentiated thyroid cancers in humans, demonstrating a solid growth pattern with sheets of round or spindle-shaped cells, decreased expression of thyroglobulin, and a tendency to lose E-cadherin. In this study, we report a novel mouse model of poorly differentiated thyroid cancer driven by the STRN-ALK oncogene with phenotypic features closely recapitulating human tumor, and with a more pronounced phenotype after additional thyroid-stimulating hormone stimulation.


Assuntos
Adenocarcinoma/patologia , Quinase do Linfoma Anaplásico/genética , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias da Glândula Tireoide/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Proteínas de Ligação a Calmodulina/genética , Diferenciação Celular , Modelos Animais de Doenças , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas de Fusão Oncogênica/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA