Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38082841

RESUMO

Atrial biophysical simulations have the potential to enhance outcomes by enabling the simulation of pharmacological and ablative strategies. However, the high computational times associated with such simulations render them unsuitable for diagnostic purposes. To address this challenge, discrete models such as cellular automata (CA) have been developed, which consider a finite number of states, thus significantly reducing computational times. Yet, there is a pressing need to determine whether CA can replicate pathological simulations with accuracy. The analysis of simulations under different degrees of electrical remodeling shows an expected increase of Action Potential Duration (APD) with the previous Diastolic Interval (DI) interval, indicating short-term memory of atrial cardiomyocytes: shorter APD0 provoked shorter APD+1, and previous DI has a similar effect on APD+1. Independent prediction using both APD0 and DI was found to provide a far better estimation of APD+1 values, compared to relying on DI alone (p<<0.01). Finally, the CA models were able to replicate reentrant patterns and cycle lengths of different states of atrial remodeling with a high degree of accuracy when compared to biophysical simulations. Overall, the use of atrial CA with short-term memory allows accurate reproduction of arrhythmic behavior in pathological tissue within a clinically relevant timeframe.Clinical Relevance- Discrete electrophysiological models simulate pathological self-sustained arrhythmias in diagnostic times.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Átrios do Coração , Miócitos Cardíacos , Potenciais de Ação
2.
Artigo em Inglês | MEDLINE | ID: mdl-38083190

RESUMO

Patients that have suffered a myocardial infarction are at high risk of developing ventricular tachycardia. Patient stratification is often determined by characterization of the underlying myocardial substrate by cardiac imaging methods. In this study, we show that computer modeling of cardiac electrophysiology based on personalized fast 3D simulations can help to assess patient risk to arrhythmia. We perform a large simulation study on 21 patient digital twins and reproduce successfully the clinical outcomes. In addition, we provide the sites which are prone to sustain ventricular tachycardias, i.e, onset sites around the scar region, and validate if they colocalize with exit sites from slow conduction channels.Clinical relevance- Fast electrophysiological simulations can provide advanced patient stratification indices and predict arrhythmic susceptibility to suffer from ventricular tachycardia in patients that have suffered a myocardial infarction.


Assuntos
Infarto do Miocárdio , Taquicardia Ventricular , Humanos , Taquicardia Ventricular/diagnóstico , Arritmias Cardíacas , Miocárdio , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Eletrofisiologia Cardíaca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA