Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 99(2): 1039-1046, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26709170

RESUMO

Fifteen primiparous crossbred dairy cows that were 114±14d in milk and weighed 533±56kg were used in a replicated 5×5 Latin square to test the efficacy of a calcium montmorillonite clay, NovaSil Plus (NSP; BASF Corp., Ludwigshaven, Germany), for the reduction of aflatoxin (AF) metabolite (AFM1) in milk and the effect of NSP on milk composition. Cows were housed in a freestall barn, fed once a day and milked twice a day. The experiment consisted of five 14-d periods: d 1 through 7 were considered for data collection, and d 8 through 14 were considered a wash-out phase. In each period, cows were randomly assigned to 1 of 5 dietary treatments: (1) control (CON), consisting of a basal total mixed ration (TMR); (2) high-dose NSP diet (NSP-1%), consisting of TMR plus 230 g of NSP; (3) aflatoxin diet (AFD), consisting of the TMR plus AF challenge; (4) low-dose NSP with AF (NSP-0.5%+AFD), composed of TMR plus 115 g of NSP and AF challenge; and (5) high-dose NSP with AF (NSP-1%+AFD), consisting of TMR plus 230 g of NSP and AF challenge. The AF challenge consisted of top dressing a daily dose of 100 µg/kg estimated dry matter intake (DMI); similarly, NSP was fed at 1.0 or 0.5% of estimated DMI. Milk yield and DMI were similar across treatments averaging 21.1±1.33 kg/d and 19.7±0.56 kg/d, respectively. Concentration of milk fat, protein, and lactose were similar across treatments with averages of 4.91±0.20%, 3.85±0.10%, and 4.70±0.06%, respectively. Concentration of vitamin A averaged 0.28±0.03 µg/mL and riboflavin concentration averaged 1.57±0.13 µg/mL across treatments. The concentration of minerals in milk were similar for all treatments. Cows fed CON and NSP-1% yielded the lowest concentration of AFM1 in milk with 0.03 and 0.01±0.06 µg/L. Addition of NSP reduced milk AFM1 from 1.10±0.06 µg/L with the AF diet to 0.58 and 0.32±0.06 µg/L with the NSP-0.5%+AF and NSP-1%+AF diets, respectively. Excretion of AFM1 was reduced by NSP; mean values were 24.38, 11.86, 7.38, 0.64, and 0.23, ± 1.71 µg/d, for AFD, NSP-0.5%+AFD, NSP-1%+AFD, NSP-1%, and CON, respectively. More specifically, 1.07±0.08% of the daily AF intake was transferred to the milk of cows consuming the AFD, whereas the AF transfer rates in milk from cows that consumed the NSP-0.5%+AFD and NSP-1%+AFD were 0.52 and 0.32±0.08%. Results from this research demonstrate that feeding NSP to lactating cows is an effective method to reduce the transfer and excretion of AFM1 in milk with no negative effects on dry matter intake, milk production, and composition.


Assuntos
Aflatoxinas/toxicidade , Silicatos de Alumínio/química , Bentonita/farmacologia , Bovinos/fisiologia , Lactação/efeitos dos fármacos , Aflatoxina M1/análise , Ração Animal/análise , Animais , Cálcio/farmacologia , Cálcio da Dieta/metabolismo , Argila , Dieta/veterinária , Suplementos Nutricionais , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Leite/química
2.
J Appl Toxicol ; 34(1): 40-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23047854

RESUMO

Food shortages and a lack of food supply regulation in developing countries often leads to chronic exposure of vulnerable populations to hazardous mixtures of mycotoxins, including aflatoxin B(1) (AFB(1)) and fumonisin B(1) (FB(1)). A refined calcium montmorillonite clay [i.e. uniform particle size NovaSil (UPSN)] has been reported to tightly bind these toxins, thereby decreasing bioavailability in humans and animals. Hence, our objectives in the present study were to examine the ability of UPSN to bind mixtures of AFB(1) and FB(1) at gastrointestinally relevant pH in vitro, and to utilize a rapid in vivo bioassay to evaluate AFB(1) and FB(1) toxicity and UPSN efficacy. Isothermal sorption data indicated tight AFB(1) binding to UPSN surfaces at both pH 2.0 and 6.5, but substantially more FB(1) bound at pH 2.0 than 6.5. Site-specific competition occurred between the toxins when exposed to UPSN in combination. Importantly, treatment with UPSN resulted in significant protection to mycotoxin-exposed hydra maintained at pH 6.9-7.0. Hydra were exposed to FB(1), AFB(1) and FB(1) /AFB(1) combinations with and without UPSN. A toxic response over 92 h was rated based on morphology and mortality. Hydra assay results indicated a minimum effective concentration (MEC) of 20 µg ml(-1) for AFB(1), whereas the MEC for FB(1) was not reached. The MEC for co-exposure was 400 µg ml(-1) FB(1) + 10 µg ml(-1) AFB(1). This study demonstrates that UPSN sorbs both mycotoxins tightly at physiologically relevant pH levels, resulting in decreased bioavailability, and that a modified hydra bioassay can be used as an initial screen in vivo to predict efficacy of toxin-binding agents.


Assuntos
Aflatoxina B1/toxicidade , Silicatos de Alumínio/química , Fumonisinas/toxicidade , Hydra/efeitos dos fármacos , Testes de Toxicidade/métodos , Aflatoxina B1/farmacocinética , Animais , Argila , Fumonisinas/farmacocinética , Hydra/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...