Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 29(Pt 6): 1454-1464, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36345754

RESUMO

The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range.


Assuntos
Holografia , Lasers , Raios X , Radiografia
2.
J Synchrotron Radiat ; 29(Pt 5): 1273-1283, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073887

RESUMO

Pump-probe experiments at X-ray free-electron laser (XFEL) facilities are a powerful tool for studying dynamics at ultrafast and longer timescales. Observing the dynamics in diverse scientific cases requires optical laser systems with a wide range of wavelength, flexible pulse sequences and different pulse durations, especially in the pump source. Here, the pump-probe instrumentation available for measurements at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of the European XFEL is reported. The temporal and spatial stability of this instrumentation is also presented.


Assuntos
Lasers , Cristalografia por Raios X , Radiografia , Raios X
3.
J Synchrotron Radiat ; 26(Pt 2): 328-332, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855239

RESUMO

User operation at the European X-ray Free-Electron Laser Facility started at the SASE1 undulator beamline in fall 2017. The majority of the experiments utilize optical lasers (mostly ultrafast) for pump-probe-type measurements in combination with X-ray pulses. This manuscript describes the purpose-developed pump-probe laser system as installed at SASE1, implemented features and plans for further upgrades.

4.
J Chem Phys ; 149(20): 204313, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30501230

RESUMO

The photodissociation dynamics of CH3I and CH2ClI at 272 nm were investigated by time-resolved Coulomb explosion imaging, with an intense non-resonant 815 nm probe pulse. Fragment ion momenta over a wide m/z range were recorded simultaneously by coupling a velocity map imaging spectrometer with a pixel imaging mass spectrometry camera. For both molecules, delay-dependent pump-probe features were assigned to ultraviolet-induced carbon-iodine bond cleavage followed by Coulomb explosion. Multi-mass imaging also allowed the sequential cleavage of both carbon-halogen bonds in CH2ClI to be investigated. Furthermore, delay-dependent relative fragment momenta of a pair of ions were directly determined using recoil-frame covariance analysis. These results are complementary to conventional velocity map imaging experiments and demonstrate the application of time-resolved Coulomb explosion imaging to photoinduced real-time molecular motion.

5.
J Vis Exp ; (140)2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30417878

RESUMO

This protocol describes key steps in performing and analyzing femtosecond pump-probe experiments that combine a femtosecond optical laser with a free-electron laser. This includes methods to establish the spatial and temporal overlap between the optical and free-electron laser pulses during the experiment, as well as important aspects of the data analysis, such as corrections for arrival time jitter, which are necessary to obtain high-quality pump-probe data sets with the best possible temporal resolution. These methods are demonstrated for an exemplary experiment performed at the FLASH (Free-electron LASer Hamburg) free-electron laser in order to study ultrafast photochemistry in gas-phase molecules by means of velocity map ion imaging. However, most of the strategies are also applicable to similar pump-probe experiments using other targets or other experimental techniques.


Assuntos
Elétrons/uso terapêutico , Lasers
6.
IUCrJ ; 5(Pt 5): 574-584, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224961

RESUMO

Liquid microjets are a common means of delivering protein crystals to the focus of X-ray free-electron lasers (FELs) for serial femtosecond crystallography measurements. The high X-ray intensity in the focus initiates an explosion of the microjet and sample. With the advent of X-ray FELs with megahertz rates, the typical velocities of these jets must be increased significantly in order to replenish the damaged material in time for the subsequent measurement with the next X-ray pulse. This work reports the results of a megahertz serial diffraction experiment at the FLASH FEL facility using 4.3 nm radiation. The operation of gas-dynamic nozzles that produce liquid microjets with velocities greater than 80 m s-1 was demonstrated. Furthermore, this article provides optical images of X-ray-induced explosions together with Bragg diffraction from protein microcrystals exposed to trains of X-ray pulses repeating at rates of up to 4.5 MHz. The results indicate the feasibility for megahertz serial crystallography measurements with hard X-rays and give guidance for the design of such experiments.

7.
J Synchrotron Radiat ; 25(Pt 5): 1517-1528, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179193

RESUMO

Extreme ultraviolet (XUV) and X-ray free-electron lasers enable new scientific opportunities. Their ultra-intense coherent femtosecond pulses give unprecedented access to the structure of undepositable nanoscale objects and to transient states of highly excited matter. In order to probe the ultrafast complex light-induced dynamics on the relevant time scales, the multi-purpose end-station CAMP at the free-electron laser FLASH has been complemented by the novel multilayer-mirror-based split-and-delay unit DESC (DElay Stage for CAMP) for time-resolved experiments. XUV double-pulses with delays adjustable from zero femtoseconds up to 650 picoseconds are generated by reflecting under near-normal incidence, exceeding the time range accessible with existing XUV split-and-delay units. Procedures to establish temporal and spatial overlap of the two pulses in CAMP are presented, with emphasis on the optimization of the spatial overlap at long time-delays via time-dependent features, for example in ion spectra of atomic clusters.

8.
J Synchrotron Radiat ; 25(Pt 5): 1529-1540, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179194

RESUMO

The non-monochromatic beamline BL1 at the FLASH free-electron laser facility at DESY was upgraded with new transport and focusing optics, and a new permanent end-station, CAMP, was installed. This multi-purpose instrument is optimized for electron- and ion-spectroscopy, imaging and pump-probe experiments at free-electron lasers. It can be equipped with various electron- and ion-spectrometers, along with large-area single-photon-counting pnCCD X-ray detectors, thus enabling a wide range of experiments from atomic, molecular, and cluster physics to material and energy science, chemistry and biology. Here, an overview of the layout, the beam transport and focusing capabilities, and the experimental possibilities of this new end-station are presented, as well as results from its commissioning.

9.
J Phys Chem A ; 122(21): 4779-4784, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29746126

RESUMO

Rydberg excitations in the vacuum ultraviolet spectral range may open up molecular photoreaction pathways not accessible from lower-lying valence states. Here, single-shot UV/VUV pump-probe spectroscopy was used to study the photodissociation dynamics of iodomethane after 268 nm excitation in the A-band and excitation of the 6p (2 E3/2) Rydberg state at 161 nm. By combining weak-field VUV single-photon ionization with sub-10 fs temporal resolution and the superior statistical accuracy of the single-shot technique, sub-30 fs wave packet dynamics upon excitation in the A-band by a UV pump pulse were disclosed. Population transfer from the Rydberg state to the 2 1 A1 valence state leading to 100 fs dissociation dynamics was observed by utilizing the same methodology in a VUV-pump/UV-probe scheme.

10.
J Synchrotron Radiat ; 25(Pt 2): 336-345, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488911

RESUMO

The application of a novel fast optical-imaging camera, TimepixCam, to molecular photoionization experiments using the velocity-map imaging technique at a free-electron laser is described. TimepixCam is a 256 × 256 pixel CMOS camera that is able to detect and time-stamp ion hits with 20 ns timing resolution, thus making it possible to record ion momentum images for all fragment ions simultaneously and avoiding the need to gate the detector on a single fragment. This allows the recording of significantly more data within a given amount of beam time and is particularly useful for pump-probe experiments, where drifts, for example, in the timing and pulse energy of the free-electron laser, severely limit the comparability of pump-probe scans for different fragments taken consecutively. In principle, this also allows ion-ion covariance or coincidence techniques to be applied to determine angular correlations between fragments.

11.
Opt Lett ; 40(8): 1675-8, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25872045

RESUMO

We demonstrate the generation of microjoule level, sub-20-fs, Ti:Sa fifth-harmonic pulses utilizing a loose-focusing geometry in a long Ar gas cell. The VUV pulses centered at 161.8 nm reach pulse energies of 1.1 µJ per pulse, while the corresponding pulse duration is measured with a second-order, fringe-resolved autocorrelation scheme to be 18±1 fs. Nonresonant, two-photon ionization of Kr and three-photon ionization of Ne verify the fifth-harmonic pulse high-intensity content and indicate the feasibility of multi-photon VUV pump-VUV probe studies of ultrafast atomic and molecular dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...