Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Sci ; 24(1): 44, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28711067

RESUMO

BACKGROUND: The inward rectifier potassium current IK1 contributes to a stable resting membrane potential and phase 3 repolarization of the cardiac action potential. KCNJ2 gain-of-function mutations V93I and D172N associate with increased IK1, short QT syndrome type 3 and congenital atrial fibrillation. Pentamidine-Analogue 6 (PA-6) is an efficient (IC50 = 14 nM with inside-out patch clamp methodology) and specific IK1 inhibitor that interacts with the cytoplasmic pore region of the KIR2.1 ion channel, encoded by KCNJ2. At 10 µM, PA-6 increases wild-type (WT) KIR2.1 expression in HEK293T cells upon chronic treatment. We hypothesized that PA-6 will interact with and inhibit V93I and D172N KIR2.1 channels, whereas impact on channel expression at the plasma membrane requires higher concentrations. METHODS: Molecular modelling was performed with the human KIR2.1 closed state homology model using FlexX. WT and mutant KIR2.1 channels were expressed in HEK293 cells. Patch-clamp single cell electrophysiology measurements were performed in the whole cell and inside-out mode of the patch clamp method. KIR2.1 expression level and localization were determined by western blot analysis and immunofluorescence microscopy, respectively. RESULTS: PA-6 docking in the V93I/D172N double mutant homology model of KIR2.1 demonstrated that mutations and drug-binding site are >30 Å apart. PA-6 inhibited WT and V93I outward currents with similar potency (IC50 = 35.5 and 43.6 nM at +50 mV for WT and V93I), whereas D172N currents were less sensitive (IC50 = 128.9 nM at +50 mV) using inside-out patch-clamp electrophysiology. In whole cell mode, 1 µM of PA-6 inhibited outward IK1 at -50 mV by 28 ± 36%, 18 ± 20% and 10 ± 6%, for WT, V93I and D172N channels respectively. Western blot analysis demonstrated that PA-6 (5 µM, 24 h) increased KIR2.1 expression levels of WT (6.3 ± 1.5 fold), and V93I (3.9 ± 0.9) and D172N (4.8 ± 2.0) mutants. Immunofluorescent microscopy demonstrated dose-dependent intracellular KIR2.1 accumulation following chronic PA-6 application (24 h, 1 and 5 µM). CONCLUSIONS: 1) KCNJ2 gain-of-function mutations V93I and D172N in the KIR2.1 ion channel do not impair PA-6 mediated inhibition of IK1, 2) PA-6 elevates KIR2.1 protein expression and induces intracellular KIR2.1 accumulation, 3) PA-6 is a strong candidate for further preclinical evaluation in treatment of congenital SQT3 and AF.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Pentamidina/análogos & derivados , Pentamidina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/genética , Potenciais de Ação , Células HEK293 , Humanos , Potenciais da Membrana , Simulação de Acoplamento Molecular , Pentamidina/química , Bloqueadores dos Canais de Potássio/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
2.
J Cell Mol Med ; 21(10): 2514-2523, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28425222

RESUMO

Drug-induced ion channel trafficking disturbance can cause cardiac arrhythmias. The subcellular level at which drugs interfere in trafficking pathways is largely unknown. KIR 2.1 inward rectifier channels, largely responsible for the cardiac inward rectifier current (IK1 ), are degraded in lysosomes. Amiodarone and dronedarone are class III antiarrhythmics. Chronic use of amiodarone, and to a lesser extent dronedarone, causes serious adverse effects to several organs and tissue types, including the heart. Both drugs have been described to interfere in the late-endosome/lysosome system. Here we defined the potential interference in KIR 2.1 backward trafficking by amiodarone and dronedarone. Both drugs inhibited IK1 in isolated rabbit ventricular cardiomyocytes at supraclinical doses only. In HK-KWGF cells, both drugs dose- and time-dependently increased KIR 2.1 expression (2.0 ± 0.2-fold with amiodarone: 10 µM, 24 hrs; 2.3 ± 0.3-fold with dronedarone: 5 µM, 24 hrs) and late-endosomal/lysosomal KIR 2.1 accumulation. Increased KIR 2.1 expression level was also observed in the presence of Nav 1.5 co-expression. Augmented KIR 2.1 protein levels and intracellular accumulation were also observed in COS-7, END-2, MES-1 and EPI-7 cells. Both drugs had no effect on Kv 11.1 ion channel protein expression levels. Finally, amiodarone (73.3 ± 10.3% P < 0.05 at -120 mV, 5 µM) enhanced IKIR2.1 upon 24-hrs treatment, whereas dronedarone tended to increase IKIR2.1 and it did not reach significance (43.8 ± 5.5%, P = 0.26 at -120 mV; 2 µM). We conclude that chronic amiodarone, and potentially also dronedarone, treatment can result in enhanced IK1 by inhibiting KIR 2.1 degradation.


Assuntos
Amiodarona/análogos & derivados , Amiodarona/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Animais , Antiarrítmicos/farmacologia , Células COS , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Dronedarona , Células HEK293 , Humanos , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...