Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 184(16): 4168-4185.e21, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216539

RESUMO

Metabolism is a major regulator of immune cell function, but it remains difficult to study the metabolic status of individual cells. Here, we present Compass, an algorithm to characterize cellular metabolic states based on single-cell RNA sequencing and flux balance analysis. We applied Compass to associate metabolic states with T helper 17 (Th17) functional variability (pathogenic potential) and recovered a metabolic switch between glycolysis and fatty acid oxidation, akin to known Th17/regulatory T cell (Treg) differences, which we validated by metabolic assays. Compass also predicted that Th17 pathogenicity was associated with arginine and downstream polyamine metabolism. Indeed, polyamine-related enzyme expression was enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic perturbation of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and remodeled the transcriptome and epigenome of Th17 cells toward a Treg-like state. In vivo perturbations of the polyamine pathway altered the phenotype of encephalitogenic T cells and attenuated tissue inflammation in CNS autoimmunity.


Assuntos
Autoimunidade/imunologia , Modelos Biológicos , Células Th17/imunologia , Acetiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Aerobiose/efeitos dos fármacos , Algoritmos , Animais , Autoimunidade/efeitos dos fármacos , Cromatina/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Citocinas/metabolismo , Eflornitina/farmacologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Epigenoma , Ácidos Graxos/metabolismo , Glicólise/efeitos dos fármacos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Oxirredução/efeitos dos fármacos , Putrescina/metabolismo , Análise de Célula Única , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th17/efeitos dos fármacos , Transcriptoma/genética
2.
Sci Adv ; 7(21)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34138729

RESUMO

Virus-infected cells and cancers share metabolic commonalities that stem from their insatiable need to replicate while evading the host immune system. These similarities include hijacking signaling mechanisms that induce metabolic rewiring in the host to up-regulate nucleotide metabolism and, in parallel, suppress the immune response. In both cancer and viral infections, the host immune cells and, specifically, lymphocytes augment nucleotide synthesis to support their own proliferation and effector functions. Consequently, established treatment modalities targeting nucleotide metabolism against cancers and virally infected cells may result in restricted immune response. Encouragingly, following the introduction of immunotherapy against cancers, multiple studies improved our understanding for improving antigen presentation to the immune system. We propose here that understanding the immune consequences of targeting nucleotide metabolism against cancers may be harnessed to optimize therapy against viral infections.


Assuntos
Neoplasias , Viroses , Apresentação de Antígeno , Humanos , Imunoterapia , Neoplasias/terapia , Nucleotídeos
3.
Cell Rep ; 28(12): 3011-3021.e4, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533027

RESUMO

T cell stimulation is metabolically demanding. To exit quiescence, T cells rely on environmental nutrients, including glucose and the amino acids glutamine, leucine, serine, and arginine. The expression of transporters for these nutrients is tightly regulated and required for T cell activation. In contrast to these amino acids, which are essential or require multi-step biosynthesis, alanine can be made from pyruvate by a single transamination. Here, we show that extracellular alanine is nevertheless required for efficient exit from quiescence during naive T cell activation and memory T cell restimulation. Alanine deprivation leads to metabolic and functional impairments. Mechanistically, this vulnerability reflects the low expression of alanine aminotransferase, the enzyme required for interconverting pyruvate and alanine, whereas activated T cells instead induce alanine transporters. Stable isotope tracing reveals that alanine is not catabolized but instead supports protein synthesis. Thus, T cells depend on exogenous alanine for protein synthesis and normal activation.


Assuntos
Alanina/farmacologia , Memória Imunológica/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T/imunologia , Animais , Camundongos , Linfócitos T/citologia
4.
Cell Syst ; 8(5): 412-426.e7, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31078528

RESUMO

Tyrosine kinase inhibitors (TKIs) are widely used to treat solid tumors but can be cardiotoxic. The molecular basis for this toxicity and its relationship to therapeutic mechanisms remain unclear; we therefore undertook a systems-level analysis of human cardiomyocytes (CMs) exposed to four TKIs. CMs differentiated from human induced pluripotent stem cells (hiPSCs) were exposed to sunitinib, sorafenib, lapatinib, or erlotinib, and responses were assessed by functional assays, microscopy, RNA sequencing, and mass spectrometry (GEO: GSE114686; PRIDE: PXD012043). TKIs have diverse effects on hiPSC-CMs distinct from inhibition of tyrosine-kinase-mediated signal transduction; cardiac metabolism is particularly sensitive. Following sorafenib treatment, oxidative phosphorylation is downregulated, resulting in a profound defect in mitochondrial energetics. Cells adapt by upregulating aerobic glycolysis. Adaptation makes cells less acutely sensitive to sorafenib but may have long-term negative consequences. Thus, CMs exhibit adaptive responses to anti-cancer drugs conceptually similar to those previously shown in tumors to mediate drug resistance.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Aclimatação , Antineoplásicos/farmacologia , Cardiotoxicidade/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cloridrato de Erlotinib/farmacologia , Perfilação da Expressão Gênica/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lapatinib/farmacologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Sunitinibe/farmacologia
5.
Proc Natl Acad Sci U S A ; 115(52): 13347-13352, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530686

RESUMO

T cell-mediated immune responses are compromised in aged individuals, leading to increased morbidity and reduced response to vaccination. While cellular metabolism tightly regulates T cell activation and function, metabolic reprogramming in aged T cells has not been thoroughly studied. Here, we report a systematic analysis of metabolism during young versus aged naïve T cell activation. We observed a decrease in the number and activation of naïve T cells isolated from aged mice. While young T cells demonstrated robust mitochondrial biogenesis and respiration upon activation, aged T cells generated smaller mitochondria with lower respiratory capacity. Using quantitative proteomics, we defined the aged T cell proteome and discovered a specific deficit in the induction of enzymes of one-carbon metabolism. The activation of aged naïve T cells was enhanced by addition of products of one-carbon metabolism (formate and glycine). These studies define mechanisms of skewed metabolic remodeling in aged T cells and provide evidence that modulation of metabolism has the potential to promote immune function in aged individuals.


Assuntos
Imunidade Inata/fisiologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Fatores Etários , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Carbono/metabolismo , Feminino , Imunidade Celular/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Biogênese de Organelas , Respiração , Linfócitos T/metabolismo
6.
Nat Immunol ; 19(8): 838-848, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988091

RESUMO

Foxo transcription factors play an essential role in regulating specialized lymphocyte functions and in maintaining T cell quiescence. Here, we used a system in which Foxo1 transcription-factor activity, which is normally terminated upon cell activation, cannot be silenced, and we show that enforcing Foxo1 activity disrupts homeostasis of CD4 conventional and regulatory T cells. Despite limiting cell metabolism, continued Foxo1 activity is associated with increased activation of the kinase Akt and a cell-intrinsic proliferative advantage; however, survival and cell division are decreased in a competitive setting or growth-factor-limiting conditions. Via control of expression of the transcription factor Myc and the IL-2 receptor ß-chain, termination of Foxo1 signaling couples the increase in cellular cholesterol to biomass accumulation after activation, thereby facilitating immunological synapse formation and mTORC1 activity. These data reveal that Foxo1 regulates the integration of metabolic and mitogenic signals essential for T cell competitive fitness and the coordination of cell growth with cell division.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Proteína Forkhead Box O1/metabolismo , Linfócitos T Reguladores/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Colesterol/metabolismo , Proteína Forkhead Box O1/genética , Perfilação da Expressão Gênica , Homeostase , Sinapses Imunológicas/metabolismo , Subunidade beta de Receptor de Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais
7.
Nat Immunol ; 17(12): 1436-1446, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27695002

RESUMO

Follicular regulatory T cells (TFR cells) inhibit follicular helper T cell (TFH cell)-mediated antibody production. The mechanisms by which TFR cells exert their key immunoregulatory functions are largely unknown. Here we found that TFR cells induced a distinct suppressive state in TFH cells and B cells, in which effector transcriptional signatures were maintained but key effector molecules and metabolic pathways were suppressed. The suppression of B cell antibody production and metabolism by TFR cells was durable and persisted even in the absence of TFR cells. This durable suppression was due in part to epigenetic changes. The cytokine IL-21 was able to overcome TFR cell-mediated suppression and inhibited TFR cells and stimulated B cells. By determining mechanisms of TFR cell-mediated suppression, we have identified methods for modulating the function of TFR cells and antibody production.


Assuntos
Subpopulações de Linfócitos B/imunologia , Centro Germinativo/imunologia , Tolerância Imunológica , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Animais , Formação de Anticorpos , Células Cultivadas , Epigênese Genética , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-21/genética , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Cell Metab ; 24(1): 104-17, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27411012

RESUMO

Naive T cell stimulation activates anabolic metabolism to fuel the transition from quiescence to growth and proliferation. Here we show that naive CD4(+) T cell activation induces a unique program of mitochondrial biogenesis and remodeling. Using mass spectrometry, we quantified protein dynamics during T cell activation. We identified substantial remodeling of the mitochondrial proteome over the first 24 hr of T cell activation to generate mitochondria with a distinct metabolic signature, with one-carbon metabolism as the most induced pathway. Salvage pathways and mitochondrial one-carbon metabolism, fed by serine, contribute to purine and thymidine synthesis to enable T cell proliferation and survival. Genetic inhibition of the mitochondrial serine catabolic enzyme SHMT2 impaired T cell survival in culture and antigen-specific T cell abundance in vivo. Thus, during T cell activation, mitochondrial proteome remodeling generates specialized mitochondria with enhanced one-carbon metabolism that is critical for T cell activation and survival.


Assuntos
Carbono/metabolismo , Ativação Linfocitária/imunologia , Biogênese de Organelas , Proteoma/metabolismo , Linfócitos T/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Sobrevivência Celular , Metabolismo Energético , Epitopos , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteômica , Pirimidinas/biossíntese
9.
Gerontology ; 61(2): 131-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25402204

RESUMO

The aging immune system is unable to optimally respond to pathogens and generate long-term immunological memory against encountered antigens. Amongst the immune components most affected by aging are T lymphocytes. T lymphocytes are cells of the cell-mediated immune system, which can recognize microbial antigens and either directly kill infected cells or support the maturation and activation of other immune cells. When activated, T cells undergo a metabolic switch to accommodate their changing needs at every stage of the immune response. Here we review the different aspects of metabolic regulation of T cell activation, focusing on the emerging role of mitochondrial metabolism, and discuss changes that may contribute to age-related decline in T cell potency. Better understanding of the role of mitochondrial metabolism in immune cell function could provide insights into mechanisms of immune senescence with the potential for developing novel therapeutic approaches to improve immune responses in aged individuals.


Assuntos
Envelhecimento/imunologia , Senescência Celular/imunologia , Ativação Linfocitária/fisiologia , Mitocôndrias/metabolismo , Linfócitos T/metabolismo , Idoso , Humanos , Imunidade Celular/fisiologia
10.
Proc Natl Acad Sci U S A ; 110(6): 2264-9, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23335631

RESUMO

The adaptive arm of the immune system has been suggested as an important factor in brain function. However, given the fact that interactions of neurons or glial cells with T lymphocytes rarely occur within the healthy CNS parenchyma, the underlying mechanism is still a mystery. Here we found that at the interface between the brain and blood circulation, the epithelial layers of the choroid plexus (CP) are constitutively populated with CD4(+) effector memory cells with a T-cell receptor repertoire specific to CNS antigens. With age, whereas CNS specificity in this compartment was largely maintained, the cytokine balance shifted in favor of the T helper type 2 (Th2) response; the Th2-derived cytokine IL-4 was elevated in the CP of old mice, relative to IFN-γ, which decreased. We found this local cytokine shift to critically affect the CP epithelium, triggering it to produce the chemokine CCL11 shown to be associated with cognitive dysfunction. Partial restoration of cognitive ability in aged mice, by lymphopenia-induced homeostasis-driven proliferation of memory T cells, was correlated with restoration of the IL-4:IFN-γ ratio at the CP and modulated the expression of plasticity-related genes at the hippocampus. Our data indicate that the cytokine milieu at the CP epithelium is affected by peripheral immunosenescence, with detrimental consequences to the aged brain. Amenable to immunomodulation, this interface is a unique target for arresting age-related cognitive decline.


Assuntos
Envelhecimento/imunologia , Envelhecimento/patologia , Encéfalo/imunologia , Encéfalo/patologia , Plexo Corióideo/imunologia , Plexo Corióideo/patologia , Células Th2/imunologia , Células Th2/patologia , Imunidade Adaptativa , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Proliferação de Células , Epitélio/imunologia , Epitélio/patologia , Hipocampo/imunologia , Hipocampo/patologia , Memória Imunológica , Linfopenia/imunologia , Linfopenia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroimunomodulação , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Receptor de Interferon gama
11.
Brain Behav Immun ; 25(5): 1036-43, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21182929

RESUMO

An organism's behavior is determined by the way it senses and perceives the surrounding environment, and by its responses to these stimuli. The major factors known to affect the behavioral response to an event are genetic background, environmental factors, and past experiences, and their imprinting on the relevant brain circuits. Recently, circulating immune cells were introduced as novel players into this system. It was proposed that the brain and circulating immune cells engage in a continuous dialogue that takes place within the brain's territory, though outside the parenchyma (occurring within the brain's borders - the choroid plexi, the brain meninges and the cerebrospinal fluid (CSF)). The cytokines secreted by activated leukocytes residing at the borders were shown to affect neurotrophic factors production within the parenchyma. Here, we suggest that such a dialogue is stimulated at the brain's borders, upon need, by a "danger" signal that originates in the parenchyma in response to any destabilizing event, and discuss the potential role of reactive oxygen species (ROS) in transmitting this signal. Accordingly, a failure to restore balance is likely to lead to aberrant responses to subsequent events. This view thus supports the contention that circulating immune cells are required to maintain the brain's balanced activity and suggests a novel mechanism whereby the surveying immune cells are sensing the brain's status and needs.


Assuntos
Imunidade Adaptativa/imunologia , Encéfalo/imunologia , Imunidade Adaptativa/fisiologia , Animais , Autoimunidade/imunologia , Autoimunidade/fisiologia , Encéfalo/metabolismo , Homeostase/imunologia , Homeostase/fisiologia , Humanos , Imunidade Celular/imunologia , Imunidade Celular/fisiologia , Inflamação/imunologia , Inflamação/fisiopatologia , Camundongos , Plasticidade Neuronal/fisiologia , Oxirredução , Transdução de Sinais/fisiologia , Linfócitos T/imunologia , Linfócitos T/fisiologia
12.
J Cell Mol Med ; 14(10): 2470-82, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19650830

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating disease, characterized by extremely rapid loss of motor neurons. Our studies over the last decade have established CD4(+) T cells as important players in central nervous system maintenance and repair. Those results, together with recent findings that CD4(+) T cells play a protective role in mouse models of ALS, led us to the current hypothesis that in ALS, a rapid T-cell malfunction may develop in parallel to the motor neuron dysfunction. Here, we tested this hypothesis by assessing thymic function, which serves as a measure of peripheral T-cell availability, in an animal model of ALS (mSOD1 [superoxide dismutase] mice; G93A) and in human patients. We found a significant reduction in thymic progenitor-cell content, and abnormal thymic histology in 3-4-month-old mSOD1 mice. In ALS patients, we found a decline in thymic output, manifested in the reduction in blood levels of T-cell receptor rearrangement excision circles, a non-invasive measure of thymic function, and demonstrated a restricted T-cell repertoire. The morbidity of the peripheral immune cells was also manifested in the increase of pro-apoptotic BAX/BCXL2 expression ratio in peripheral blood mononuclear cells (PBMCs) of these patients. In addition, gene expression screening in the same PBMCs, revealed in the ALS patients a reduction in key genes known to be associated with T-cell activity, including: CD80, CD86, IFNG and IL18. In light of the reported beneficial role of T cells in animal models of ALS, the present observation of thymic dysfunction, both in human patients and in an animal model, might be a co-pathological factor in ALS, regardless of the disease aetiology. These findings may lead to the development of novel therapeutic approaches directed at overcoming the thymic defect and T-cell deficiency.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Perfilação da Expressão Gênica , Timo/fisiopatologia , Adulto , Animais , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Rearranjo Gênico do Linfócito T , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Timo/imunologia
13.
Trends Neurosci ; 32(7): 367-75, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19520437

RESUMO

The factors that determine brain aging remain a mystery. Do brain aging and memory loss reflect processes occurring only within the brain? Here, we present a novel view, linking aging of adaptive immunity to brain senescence and specifically to spatial memory deterioration. Inborn immune deficiency, in addition to sudden imposition of immune malfunction in young animals, results in cognitive impairment. As a corollary, immune restoration at adulthood or in the elderly results in a reversal of memory loss. These results, together with the known deterioration of adaptive immunity in the elderly, suggest that memory loss does not solely reflect chronological age; rather, it is an outcome of the gap between an increasing demand for maintenance (age-related risk-factor accumulation) and the reduced ability of the immune system to meet these needs.


Assuntos
Imunidade Adaptativa/fisiologia , Envelhecimento/imunologia , Encéfalo/imunologia , Transtornos da Memória/imunologia , Rejuvenescimento/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...