Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
NPJ Microgravity ; 10(1): 2, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191486

RESUMO

Staphylococcus aureus colonizes the nares of approximately 30% of humans, a risk factor for opportunistic infections. To gain insight into S. aureus virulence potential in the spaceflight environment, we analyzed RNA-Seq, cellular proteomics, and metabolomics data from the "Biological Research in Canisters-23" (BRIC-23) GeneLab spaceflight experiment, a mission designed to measure the response of S. aureus to growth in low earth orbit on the international space station. This experiment used Biological Research in Canisters-Petri Dish Fixation Units (BRIC-PDFUs) to grow asynchronous ground control and spaceflight cultures of S. aureus for 48 h. RNAIII, the effector of the Accessory Gene Regulator (Agr) quorum sensing system, was the most highly upregulated gene transcript in spaceflight relative to ground controls. The agr operon gene transcripts were also highly upregulated during spaceflight, followed by genes encoding phenol-soluble modulins and secreted proteases, which are positively regulated by Agr. Upregulated spaceflight genes/proteins also had functions related to urease activity, type VII-like Ess secretion, and copper transport. We also performed secretome analysis of BRIC-23 culture supernatants, which revealed that spaceflight samples had increased abundance of secreted virulence factors, including Agr-regulated proteases (SspA, SspB), staphylococcal nuclease (Nuc), and EsxA (secreted by the Ess system). These data also indicated that S. aureus metabolism is altered in spaceflight conditions relative to the ground controls. Collectively, these data suggest that S. aureus experiences increased quorum sensing and altered expression of virulence factors in response to the spaceflight environment that may impact its pathogenic potential.

2.
Methods Mol Biol ; 2741: 3-10, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217645

RESUMO

Investigations into the biological role and composition of bacterial extracellular vesicles have grown in popularity in recent years. Vesicles perform a variety of functions during interactions with eukaryotic host cells, ranging from antibiotic resistance to immune modulation. It is necessary to isolate vesicles in order to understand their biological functions. Here we describe a polymer-based precipitation method allowing high-yield isolation of extracellular vesicles and their cargo RNA from the Gram-positive bacterium Staphylococcus aureus.


Assuntos
Vesículas Extracelulares , Infecções Estafilocócicas , Humanos , Membranas , Bactérias Gram-Positivas , RNA
3.
Microbiol Spectr ; 11(3): e0525522, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154710

RESUMO

Staphylococcus aureus is a Gram-positive commensal and opportunistic pathogen able to cause diseases ranging from mild skin infections to life-threatening endocarditis and toxic shock syndrome. The ability to cause such an array of diseases is due to the complex S. aureus regulatory network controlling an assortment of virulence factors, including adhesins, hemolysins, proteases, and lipases. This regulatory network is controlled by both protein and RNA elements. We previously identified a novel regulatory protein called ScrA, which, when overexpressed, leads to the increased activity and expression of the SaeRS regulon. In this study, we further explore the role of ScrA and examine the consequences to the bacterial cell of scrA gene disruption. These results demonstrate that scrA is required for several virulence-related processes, and in many cases, the phenotypes of the scrA mutant are inverse to those observed in cells overexpressing ScrA. Interestingly, while the majority of ScrA-mediated phenotypes appear to rely on the SaeRS system, our results also indicate that ScrA may also act independently of SaeRS when regulating hemolytic activity. Finally, using a murine model of infection, we demonstrate that scrA is required for virulence, potentially in an organ-specific manner. IMPORTANCE Staphylococcus aureus is the cause of several potentially life-threatening infections. An assortment of toxins and virulence factors allows such a wide range of infections. However, an assortment of toxins or virulence factors requires complex regulation to control expression under all of the different conditions encountered by the bacterium. Understanding the intricate web of regulatory systems allows the development of novel approaches to combat S. aureus infections. Here, we have shown that the small protein ScrA, which was previously identified by our laboratory, influences several virulence-related functions through the SaeRS global regulatory system. These findings add ScrA to the growing list of virulence regulators in S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Camundongos , Virulência , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo , Infecções Estafilocócicas/microbiologia
4.
New Phytol ; 238(4): 1605-1619, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856342

RESUMO

Testing effector knockout strains of the Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) for reduced in planta growth in their native kiwifruit host revealed a number of nonredundant effectors that contribute to Psa3 virulence. Conversely, complementation in the weak kiwifruit pathogen P. syringae pv. actinidifoliorum (Pfm) for increased growth identified redundant Psa3 effectors. Psa3 effectors hopAZ1a and HopS2b and the entire exchangeable effector locus (ΔEEL; 10 effectors) were significant contributors to bacterial colonisation of the host and were additive in their effects on virulence. Four of the EEL effectors (HopD1a, AvrB2b, HopAW1a and HopD2a) redundantly contribute to virulence through suppression of pattern-triggered immunity (PTI). Important Psa3 effectors include several redundantly required effectors early in the infection process (HopZ5a, HopH1a, AvrPto1b, AvrRpm1a and HopF1e). These largely target the plant immunity hub, RIN4. This comprehensive effector profiling revealed that Psa3 carries robust effector redundancy for a large portion of its effectors, covering a few functions critical to disease.


Assuntos
Actinidia , Doenças das Plantas , Doenças das Plantas/microbiologia , Bactérias , Virulência , Imunidade Vegetal , Reconhecimento da Imunidade Inata , Pseudomonas syringae , Proteínas de Bactérias
5.
J Neonatal Perinatal Med ; 16(1): 49-57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36530095

RESUMO

BACKGROUND: Neonatal opioid withdrawal syndrome (NOWS) is a growing public health problem associated with complex and prolonged medical care and a significant resource utilization burden. The objective of this study was to compare the cost of different convalescent care settings for infants with NOWS. METHODS: Retrospective comparison study of infants with NOWS discharged directly from NICU, transferred to an acute care pediatric floor (PPCU) or rehabilitation hospital (PRH). Primary outcomes were length of stay (LOS) and cost of stay (COS). RESULTS: Infants had 1.3 (95% CI: 1.1,1.6) times and 2.5 (95% CI: 2.1,3.1) times significantly longer mean LOS for PPCU and RH discharges compared to NICU discharges. NICU discharged infants had the lowest mean COS ($25,745.00) and PRH the highest ($60,528.00), despite PRH having a lower cost per day. PRH discharged infants had higher rates of methadone and benzodiazepine and less buprenorphine exposure than NICU/PPCU discharged. Infants born to mothers on marijuana and buprenorphine had a 28% lower mean COS compared to unexposed infants. Median treatment cumulative morphine doses were six-fold higher for PRH than NICU discharge. CONCLUSIONS: Infants transferred to convalescence care facilities had longer and more costly admissions and received more medication. However, there may be a role for earlier transfer of a subset of infants at-risk for longer LOS as those exposed to methadone and/or benzodiazepines. Further studies exploring differences in resource utilization, convalescent care delivery and cost expenditure are recommended.


Assuntos
Buprenorfina , Síndrome de Abstinência Neonatal , Recém-Nascido , Lactente , Humanos , Criança , Analgésicos Opioides/uso terapêutico , Estudos Retrospectivos , Metadona , Hospitalização , Síndrome de Abstinência Neonatal/tratamento farmacológico , Tempo de Internação , Buprenorfina/uso terapêutico
6.
Infect Immun ; 90(11): e0023622, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36214557

RESUMO

Previously, our group demonstrated a role for the small RNA (sRNA) Teg41 in regulating production of the alpha phenol-soluble modulin toxins (αPSMs) in Staphylococcus aureus. Overexpressing Teg41 increased αPSM production while deleting the 3' end of Teg41 (Teg41Δ3' strain) resulted in a decrease in αPSM production, reduced hemolytic activity of S. aureus culture supernatants, and attenuated virulence in a murine abscess model of infection. In this study, we further explore the attenuation of virulence in the Teg41Δ3' strain. Using both localized and systemic models of infection, we demonstrate that the Teg41Δ3' strain is more severely attenuated than an ΔαPSM mutant, strongly suggesting that Teg41 influences more than the αPSMs. Proteomic and transcriptomic analysis of the wild-type and Teg41Δ3' strains reveals widespread alterations in transcript abundance and protein production in the absence of Teg41, confirming that Teg41 has pleiotropic effects in the cell. We go on to investigate the molecular mechanism underlying Teg41-mediated gene regulation. Surprisingly, results demonstrate that certain Teg41 target genes, including the αPSMs and ßPSMs, are transcriptionally altered in the Teg41Δ3' strain, while other targets, specifically spa (encoding surface protein A), are regulated at the level of transcript stability. Collectively, these data demonstrate that Teg41 is a pleiotropic RNA regulator in S. aureus that influences expression of a variety of genes using multiple different mechanisms.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Camundongos , Animais , Virulência , RNA/metabolismo , Proteômica , Regulação Bacteriana da Expressão Gênica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções Estafilocócicas/metabolismo
7.
Nat Commun ; 13(1): 3560, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732654

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen responsible for significant human morbidity and mortality. Post-transcriptional regulation by small RNAs (sRNAs) has emerged as an important mechanism for controlling virulence. However, the functionality of the majority of sRNAs during infection is unknown. To address this, we performed UV cross-linking, ligation, and sequencing of hybrids (CLASH) in MRSA to identify sRNA-RNA interactions under conditions that mimic the host environment. Using a double-stranded endoribonuclease III as bait, we uncovered hundreds of novel sRNA-RNA pairs. Strikingly, our results suggest that the production of small membrane-permeabilizing toxins is under extensive sRNA-mediated regulation and that their expression is intimately connected to metabolism. Additionally, we also uncover an sRNA sponging interaction between RsaE and RsaI. Taken together, we present a comprehensive analysis of sRNA-target interactions in MRSA and provide details on how these contribute to the control of virulence in response to changes in metabolism.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pequeno RNA não Traduzido , Ribonuclease III , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
8.
Endocrinology ; 163(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617141

RESUMO

The gut microbiome has an important role in host development, metabolism, growth, and aging. Recent research points toward potential crosstalk between the gut microbiota and the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis. Our laboratory previously showed that GH excess and deficiency are associated with an altered gut microbial composition in adult mice. Yet, no study to date has examined the influence of GH on the gut microbiome over time. Our study thus tracked the effect of excess GH action on the longitudinal changes in the gut microbial profile (ie, abundance, diversity/maturity, predictive metabolic function, and short-chain fatty acid [SCFA] levels) of bovine GH (bGH) transgenic mice at age 3, 6, and 12 months compared to littermate controls in the context of metabolism, intestinal phenotype, and premature aging. The bGH mice displayed age-dependent changes in microbial abundance, richness, and evenness. Microbial maturity was significantly explained by genotype and age. Moreover, several bacteria (ie, Lactobacillus, Lachnospiraceae, Bifidobacterium, and Faecalibaculum), predictive metabolic pathways (such as SCFA, vitamin B12, folate, menaquinol, peptidoglycan, and heme B biosynthesis), and SCFA levels (acetate, butyrate, lactate, and propionate) were consistently altered across all 3 time points, differentiating the longitudinal bGH microbiome from controls. Of note, the bGH mice also had significantly impaired intestinal fat absorption with increased fecal output. Collectively, these findings suggest that excess GH alters the gut microbiome in an age-dependent manner with distinct longitudinal microbial and predicted metabolic pathway signatures.


Assuntos
Microbioma Gastrointestinal , Hormônio do Crescimento Humano , Animais , Bovinos , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/genética , Hormônio do Crescimento/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
9.
Mol Microbiol ; 117(5): 1196-1212, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366366

RESUMO

Staphylococcus aureus is a Gram-positive commensal that can also cause a variety of infections in humans. S. aureus virulence factor gene expression is under tight control by a complex regulatory network, which includes, sigma factors, sRNAs, and two-component systems (TCS). Previous work in our laboratory demonstrated that overexpression of the sRNA tsr37 leads to an increase in bacterial aggregation. Here, we demonstrate that the clumping phenotype is dependent on a previously unannotated 88 amino acid protein encoded within the tsr37 sRNA transcript (which we named ScrA for S. aureus clumping regulator A). To investigate the mechanism of action of ScrA we performed proteomics and transcriptomics in a ScrA overexpressing strain and show that a number of surface adhesins are upregulated, while secreted proteases are downregulated. Results also showed upregulation of the SaeRS TCS, suggesting that ScrA is influencing SaeRS activity. Overexpression of ScrA in a saeR mutant abrogates the clumping phenotype confirming that ScrA functions via the Sae system. Finally, we identified the ArlRS TCS as a positive regulator of scrA expression. Collectively, our results show that ScrA is an activator of the SaeRS system and suggests that ScrA may act as an intermediary between the ArlRS and SaeRS systems.


Assuntos
Pequeno RNA não Traduzido , Infecções Estafilocócicas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Proteínas Quinases/metabolismo , Pequeno RNA não Traduzido/metabolismo , Staphylococcus aureus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
10.
mBio ; 12(6): e0280321, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724819

RESUMO

Small, noncoding RNAs (sRNAs) are being increasingly identified as important regulatory molecules in prokaryotes. Due to the prevalence of next-generation sequencing-based techniques, such as RNA sequencing (RNA-seq), there is potential for increased discovery of sRNAs within bacterial genomes; however, these elements are rarely included in annotation files. Consequently, expression values for sRNAs are omitted from most transcriptomic analyses, and mechanistic studies have lagged behind those of protein regulators in numerous bacteria. Two previous studies have identified sRNAs in the human pathogen group B Streptococcus (GBS). Here, we utilize the data from these studies to create updated genome annotation files for the model GBS strains NEM316 and COH1. Using the updated COH1 annotation file, we reanalyze publicly available GBS RNA-seq whole-transcriptome data from GenBank to monitor GBS sRNA expression under a variety of conditions and genetic backgrounds. This analysis generated expression values for 232 putative sRNAs that were overlooked in previous transcriptomic analyses in 21 unique comparisons. To demonstrate the utility of these data, we identify an sRNA that is upregulated during vaginal colonization and demonstrate that overexpression of this sRNA leads to increased bacterial invasion into host epithelial cells. Finally, to monitor RNA degradation, we perform a transcript stability assay to identify highly stable sRNAs and compare stability profiles of sRNA- and protein-coding genes. Collectively, these data provide a wealth of transcriptomic data for putative sRNAs in GBS and a platform for future mechanistic studies. IMPORTANCE In recent years, sRNAs have emerged as potent regulatory molecules in bacteria, including numerous streptococcal species, and contribute to diverse processes, including stress response, metabolism, housekeeping, and virulence regulation. Improvements in sequencing technologies and in silico analyses have facilitated identification of these regulatory molecules as well as improved attempts to determine the location of sRNA genes on the genome. However, despite these advancements, sRNAs are rarely included in genome annotation files. Consequently, these molecules are often omitted from transcriptomic data analyses and are commonly repeat identified across multiple studies. Updating current genomes to include sRNA genes is therefore critical for better understanding bacterial regulation.


Assuntos
RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Streptococcus agalactiae/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Humanos , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/química , Streptococcus agalactiae/metabolismo
11.
mSphere ; 6(5): e0067621, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34612674

RESUMO

Staphylococcus aureus is a pathogenic bacterium but also a commensal of skin and anterior nares in humans. As S. aureus transits from skins/nares to inside the human body, it experiences changes in temperature. The production and content of S. aureus extracellular vesicles (EVs) have been increasingly studied over the past few years, and EVs are increasingly being recognized as important to the infectious process. Nonetheless, the impact of temperature variation on S. aureus EVs has not been studied in detail, as most reports that investigate EV cargoes and host cell interactions are performed using vesicles produced at 37°C. Here, we report that EVs in S. aureus differ in size and protein/RNA cargo depending on the growth temperature used. We demonstrate that the temperature-dependent regulation of vesicle production in S. aureus is mediated by the alpha phenol-soluble modulin peptides (αPSMs). Through proteomic analysis, we observed increased packaging of virulence factors at 40°C, whereas the EV proteome has greater diversity at 34°C. Similar to the protein content, we perform transcriptomic analysis and demonstrate that the RNA cargo also is impacted by temperature. Finally, we demonstrate greater αPSM- and alpha-toxin-mediated erythrocyte lysis with 40°C EVs, but 34°C EVs are more cytotoxic toward THP-1 cells. Together, our study demonstrates that small temperature variations have great impact on EV biogenesis and shape the interaction with host cells. IMPORTANCE Extracellular vesicles (EVs) are lipid bilayer spheres that contain proteins, nucleic acids, and lipids secreted by bacteria. They are involved in Staphylococcus aureus infections, as they package virulence factors and deliver their contents inside host cells. The impact of temperature variations experienced by S. aureus during the infectious process on EVs is unknown. Here, we demonstrate the importance of temperature in vesicle production and packaging. High temperatures promote packaging of virulence factors and increase the protein and lipid concentration but reduce the overall RNA abundance and protein diversity in EVs. The importance of temperature changes is highlighted by the fact that EVs produced at low temperature are more toxic toward macrophages, whereas EVs produced at high temperature display more hemolysis toward erythrocytes. Our research brings new insights into temperature-dependent vesiculation and interaction with the host during S. aureus transition from colonization to virulence.


Assuntos
Vesículas Extracelulares/química , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Temperatura , Fatores de Virulência/metabolismo , Toxinas Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/microbiologia , Proteoma/análise , Proteômica/métodos , Células THP-1 , Virulência
12.
Front Plant Sci ; 12: 685416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335654

RESUMO

Tomato fruit stored below 12°C lose quality and can develop chilling injury upon subsequent transfer to a shelf temperature of 20°C. The more severe symptoms of altered fruit softening, uneven ripening and susceptibility to rots can cause postharvest losses. We compared the effects of exposure to mild (10°C) and severe chilling (4°C) on the fruit quality and transcriptome of 'Angelle', a cherry-type tomato, harvested at the red ripe stage. Storage at 4°C (but not at 10°C) for 27 days plus an additional 6 days at 20°C caused accelerated softening and the development of mealiness, both of which are commonly related to cell wall metabolism. Transcriptome analysis using RNA-Seq identified a range of transcripts encoding enzymes putatively involved in cell wall disassembly whose expression was strongly down-regulated at both 10 and 4°C, suggesting that accelerated softening at 4°C was due to factors unrelated to cell wall disassembly, such as reductions in turgor. In fruit exposed to severe chilling, the reduced transcript abundances of genes related to cell wall modification were predominantly irreversible and only partially restored upon rewarming of the fruit. Within 1 day of exposure to 4°C, large increases occurred in the expression of alternative oxidase, superoxide dismutase and several glutathione S-transferases, enzymes that protect cell contents from oxidative damage. Numerous heat shock proteins and chaperonins also showed large increases in expression, with genes showing peak transcript accumulation after different times of chilling exposure. These changes in transcript abundance were not induced at 10°C, and were reversible upon transfer of the fruit from 4 to 20°C. The data show that genes involved in cell wall modification and cellular protection have differential sensitivity to chilling temperatures, and exhibit different capacities for recovery upon rewarming of the fruit.

13.
Methods Mol Biol ; 2341: 17-24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264456

RESUMO

Staphylococcal secreted nuclease contributes to S. aureus virulence by degrading neutrophil extracellular traps (NETs), which allows the bacterium to evade the host immune system and has also been shown to promote biofilm dispersal. In this chapter, two methods for detecting nuclease activity are described, both of which have increased sensitivity compared to the traditional nuclease agar method.


Assuntos
Proteínas de Bactérias/análise , Nuclease do Micrococo/análise , Salmão/genética , Staphylococcus aureus/enzimologia , Animais , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Armadilhas Extracelulares/metabolismo , Evasão da Resposta Imune , Masculino , Nuclease do Micrococo/metabolismo , Espermatozoides/química , Staphylococcus aureus/patogenicidade , Fatores de Virulência/análise , Fatores de Virulência/metabolismo
14.
Chem Eng J ; 411: 128453, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33942011

RESUMO

A standalone electrochemical method for detecting the bacterium Escherichia coli in water was developed using a nickel electrode and no biorecognition element. Electric current responses from different E. coli concentrations were recorded based on their interaction with a locally formed electrocatalyst. A rotating disk electrode was used to minimize the mass transport limitations at the interface. Results from experiments with the rotating disk electrode also paved the way for hypothesizing the detection mechanism. The operating conditions were established for sensing the electric current responses in the presence of E. coli. The least-squares linear regression model was fit to the data obtained from currents of some known E. coli concentrations. This probe had a detection limit in the order of 104 CFU/ml. The response time to detect the presence/absence of E. coli was less than half a second, while the total assay time, including quantification of its concentration, was 10 min. The electric current response from a solution mixed with E. coli and S. aureus showed current similar to E. coli only solution indicating the specificity of the sensor to respond to signals from E. coli. This electrochemical microbial sensor's uniqueness lies in its ability to rapidly detect E. coli by forming the catalyst locally on demand without the attachment of biorecognition elements.

15.
mSphere ; 6(2)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731473

RESUMO

Staphylococcus aureus is an opportunistic pathogen that colonizes the anterior nares of 30 to 50% of the population. Colonization is most often asymptomatic; however, self-inoculation can give rise to potentially fatal infections of the deeper tissues and blood. Like all bacteria, S. aureus can sense and respond to environmental cues and modify gene expression to adapt to specific environmental conditions. The transition of S. aureus from the nares to the deeper tissues and blood is accompanied by changes in environmental conditions, such as nutrient availability, pH, and temperature. In this study, we perform transcriptomics and proteomics on S. aureus cultures growing at three physiologically relevant temperatures, 34°C (nares), 37°C (body), and 40°C (pyrexia), to determine if small scale, biologically meaningful alterations in temperature impact S. aureus gene expression. Results show that small but definite temperature changes elicit a large-scale restructuring of the S. aureus transcriptome and proteome in a manner that, most often, inversely correlates with increasing temperature. We also provide evidence that a large majority of these changes are modulated at the posttranscriptional level, possibly by sRNA regulatory elements. Phenotypic analyses were also performed to demonstrate that these changes have physiological relevance. Finally, we investigate the impact of temperature-dependent alterations in gene expression on S. aureus pathogenesis and demonstrate decreased intracellular invasion of S. aureus grown at 34°C. Collectively, our results demonstrate that small but biologically meaningful alterations in temperature influence S. aureus gene expression, a process that is likely a major contributor to the transition from a commensal to pathogen.IMPORTANCE Enteric bacterial pathogens, like Escherichia coli, are known to experience large temperature differences as they are transmitted through the fecal oral route. This change in temperature has been demonstrated to influence bacterial gene expression and facilitate infection. Staphylococcus aureus is a human-associated pathogen that can live as a commensal on the skin and nares or cause invasive infections of the deeper tissues and blood. Factors influencing S. aureus nasal colonization are not fully understood; however, individuals colonized with S. aureus are at increased risk of invasive infections through self-inoculation. The transition of S. aureus from the nose (colonization) to the body (infection) is accompanied by a modest but definite temperature increase, from 34°C to 37°C. In this study, we investigate whether these host-associated small temperature changes can influence S. aureus gene expression. Results show widespread changes in the bacterial transcriptome and proteome at three physiologically relevant temperatures (34°C, 37°C, and 40°C).


Assuntos
Proteínas de Bactérias/análise , Regulação Bacteriana da Expressão Gênica , Proteoma , Staphylococcus aureus/genética , Temperatura , Transcriptoma , Células Cultivadas , Células Epiteliais/microbiologia , Humanos , Nariz/citologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Fatores de Virulência/genética
16.
J Bacteriol ; 203(7)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33468596

RESUMO

Peptidyl-prolyl cis/trans isomerases (PPIases) are enzymes that assist in protein folding around proline-peptide bonds, and they often possess chaperone activity. Staphylococcus aureus encodes three PPIases, i.e., PrsA, PpiB, and trigger factor (TF). Previous work by our group demonstrated a role for both PrsA and PpiB in S. aureus; however, TF remains largely unstudied. Here, we identify a role for TF in S. aureus biofilm formation and demonstrate cooperation between TF and the cytoplasmic PPIase PpiB. Mutation of the tig gene (encoding TF) led to reduced biofilm development in vitro but no significant attenuation of virulence in a mouse model of infection. To investigate whether TF possesses chaperone activity, we analyzed the ability of a tig mutant to survive acid and base stress. While there was no significant decrease for a tig mutant, a ppiBtig double mutant exhibited significant decreases in cell viability after acid and base challenges. We then demonstrated that a ppiB tig double mutant had exacerbated phenotypes in vitro and in vivo, compared to either single mutant. Finally, in vivo immunoprecipitation of epitope-tagged PpiB revealed that PpiB interacted with 4 times the number of proteins when TF was absent from the cell, suggesting that it may be compensating for the loss of TF. Interestingly, the only proteins found to interact with TF were TF itself, fibronectin-binding protein B (FnBPB), and the chaperone protein ClpB. Collectively, these results support the first phenotype for S. aureus TF and demonstrate a greater network of cooperation between chaperone proteins in Staphylococcus aureusIMPORTANCES. aureus encodes a large number of virulence factors that aid the bacterium in survival and pathogenesis. These virulence factors have a wide variety of functions; however, they must all be properly secreted in order to be functional. Bacterial chaperone proteins often assist in secretion by trafficking proteins to secretion machinery or assisting in proper protein folding. Here, we report that the S. aureus chaperone TF contributes to biofilm formation and cooperates with the chaperone PpiB to regulate S. aureus virulence processes. These data highlight the first known role for TF in S. aureus and suggest that S. aureus chaperone proteins may be involved in a greater regulatory network in the cell.


Assuntos
Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/fisiologia , Peptidilprolil Isomerase/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias , Sangue/microbiologia , Sistema Livre de Células , Regulação Enzimológica da Expressão Gênica , Hemólise , Humanos , Camundongos , Chaperonas Moleculares , Peptidilprolil Isomerase/genética , Staphylococcus aureus/genética , Staphylococcus aureus/fisiologia
17.
Microbiologyopen ; 9(11): e1124, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33306280

RESUMO

Bacterial nitric oxide (NO) synthases (bNOS) play diverse and important roles in microbial physiology, stress resistance, and virulence. Although bacterial and mammalian NOS enzymes have been well-characterized, comparatively little is known about the prevalence and function of NOS enzymes in Archaea. Analysis of archaeal genomes revealed that highly conserved bNOS homologs were restricted to members of the Halobacteria. Of these, Natronomonas pharaonis NOS (npNOS) was chosen for further characterization. NO production was confirmed in heterologously expressed His-tagged npNOS by coupling nitrite production from N-hydroxy-L-arginine in an H2O2-supported reaction. Additionally, the nos gene was successfully targeted and disrupted to create a Nmn. pharaonis nos mutant by adapting an established Natrialba magadii transformation protocol. Genome re-sequencing of this mutant revealed an additional frameshift in a putative cation-acetate symporter gene, which could contribute to altered acetate metabolism in the nos mutant. Inactivation of Nmn. pharaonis nos was also associated with several phenotypes congruent with bacterial nos mutants (altered growth, increased oxygen consumption, increased pigment, increased UV susceptibility), suggesting that NOS function may be conserved between bacteria and archaea. These studies are the first to describe genetic inactivation and characterization of a Nmn. pharaonis gene and provides enhanced tools for probing its physiology.


Assuntos
Genoma Arqueal/genética , Halobacteriaceae/enzimologia , Halobacteriaceae/genética , Óxido Nítrico Sintase/genética , Óxido Nítrico/biossíntese , Acetatos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico Sintase/análise , Oxirredução , Consumo de Oxigênio/fisiologia
18.
J Bacteriol ; 203(2)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33077636

RESUMO

Streptococcus mutans utilizes numerous metabolite transporters to obtain essential nutrients in the "feast or famine" environment of the human mouth. S. mutans and most other streptococci are considered auxotrophic for several essential vitamins including riboflavin (vitamin B2), which is used to generate key cofactors and to perform numerous cellular redox reactions. Despite the well-known contributions of this vitamin to central metabolism, little is known about how S. mutans obtains and metabolizes B2 The uncharacterized protein SMU.1703c displays high sequence homology to the riboflavin transporter RibU. Deletion of SMU.1703c hindered S. mutans growth in complex and defined medium in the absence of saturating levels of exogenous riboflavin, whereas deletion of cotranscribed SMU.1702c alone had no apparent effect on growth. Expression of SMU.1703c in a Bacillus subtilis riboflavin auxotroph functionally complemented growth in nonsaturating riboflavin conditions. S. mutans was also able to grow on flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) in an SMU.1703c-dependent manner. Deletion of SMU.1703c and/or SMU.1702c impacted S. mutans acid stress tolerance, as all mutants showed improved growth at pH 5.5 compared to that of the wild type when medium was supplemented with saturating riboflavin. Cooccurrence of SMU.1703c and SMU.1702c, a hypothetical PAP2 family acid phosphatase gene, appears unique to the streptococci and may suggest a connection of SMU.1702c to the acquisition or metabolism of flavins within this genus. Identification of SMU.1703c as a RibU-like riboflavin transporter furthers our understanding of how S. mutans acquires essential micronutrients within the oral cavity and how this pathogen successfully competes within nutrient-starved oral biofilms.IMPORTANCE Dental caries form when acid produced by oral bacteria erodes tooth enamel. This process is driven by the fermentative metabolism of cariogenic bacteria, most notably Streptococcus mutans Nutrient acquisition is key in the competitive oral cavity, and many organisms have evolved various strategies to procure carbon sources or necessary biomolecules. B vitamins, such as riboflavin, which many oral streptococci must scavenge from the oral environment, are necessary for survival within the competitive oral cavity. However, the primary mechanism and proteins involved in this process remain uncharacterized. This study is important because it identifies a key step in S. mutans riboflavin acquisition and cofactor generation, which may enable the development of novel anticaries treatment strategies via selective targeting of metabolite transporters.


Assuntos
Óperon/fisiologia , Riboflavina/metabolismo , Streptococcus mutans/fisiologia , Sequência de Aminoácidos , Biologia Computacional , Teste de Complementação Genética , Humanos , Concentração de Íons de Hidrogênio , Reação em Cadeia da Polimerase/métodos , Riboflavina/química , Alinhamento de Sequência , Streptococcus mutans/genética , Streptococcus mutans/crescimento & desenvolvimento , Estresse Fisiológico/genética
19.
Infect Immun ; 88(12)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32989035

RESUMO

Extracellular vesicles (EVs) are membrane-derived lipid bilayers secreted by bacteria and eukaryotic cells. Bacterial membrane vesicles were discovered over 60 years ago and have been extensively studied in Gram-negative bacteria. During their production, EVs are loaded with proteins, nucleic acids, and various compounds that are subsequently released into the environment. Depending on the packaged cargo, EVs have a broad spectrum of action and are involved in pathogenesis, antibiotic resistance, nutrient uptake, and nucleic acid transfer. Due to differences in cell wall structure, EVs in Gram-positive bacteria have been disregarded for decades, and our understanding of their biogenesis and host cell interaction is incomplete. Recently, studies on bacteria such as Staphylococcus aureus, Streptococcus spp., Bacillus subtilis, and Mycobacterium spp. have demonstrated EV production in Gram-positive bacteria and shown the great importance EVs have in Gram-positive bacterial physiology and disease progression. Here, we review the latest findings on the biogenesis and functions of EVs from Gram-positive bacteria and identify key areas for future research.


Assuntos
Vesículas Extracelulares/metabolismo , Bactérias Gram-Positivas/metabolismo , Animais , Bacillus subtilis/metabolismo , Bioengenharia , Transporte Biológico/genética , Vesículas Extracelulares/química , Vesículas Extracelulares/imunologia , Bactérias Gram-Positivas/genética , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Mycobacterium/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Streptococcus/metabolismo , Vacinas
20.
Growth Horm IGF Res ; 53-54: 101333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32717585

RESUMO

Both the GH/IGF-1 axis and the gut microbiota independently play an important role in host growth, metabolism, and intestinal homeostasis. Inversely, abnormalities in GH action and microbial dysbiosis (or a lack of diversity) in the gut have been implicated in restricted growth, metabolic disorders (such as chronic undernutrition, anorexia nervosa, obesity, and diabetes), and intestinal dysfunction (such as pediatric Crohn's disease, colonic polyps, and colon cancer). Over the last decade, studies have demonstrated that the microbial impact on growth may be mediated through the GH/IGF-1 axis, pointing toward a potential relationship between GH and the gut microbiota. This review covers current research on the GH/IGF-1 axis and the gut microbiome and its influence on overall host growth, metabolism, and intestinal health, proposing a bidirectional relationship between GH and the gut microbiome.


Assuntos
Microbioma Gastrointestinal , Hormônio do Crescimento Humano/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...