Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067588

RESUMO

Mometasone furoate is a synthetic corticosteroid used in the treatment of skin inflammatory conditions, hay fever and asthma. The industrial manufacturing routes to mometasone furoate are generally accompanied by the formation of numerous process impurities that need to be detected and quantified, as requested by regulatory authorities. The ready availability of such impurities in the required quantity and purity is therefore essential for toxicological studies, analytical method development and process validation. Herein, we report the multi-gram scale preparation of 21'-chloro-(16'α-methyl-3',11',20'-trioxo-pregna-1',4'-dien-17'-yl)-furan-2-carboxylate (mometasone furoate EP impurity C), one of the known impurities of mometasone furoate. This study also includes the systematic investigation of the final acylation step, as well as the characterization of the difuroate enol ether intermediate and its conversion to the target impurity C.


Assuntos
Asma , Pregnadienodiois , Humanos , Furoato de Mometasona , Acilação
2.
Plants (Basel) ; 12(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36986912

RESUMO

Fusarium head blight (FHB) and Fusarium crown rot (FCR) are managed by the application of imidazole fungicides, which will be strictly limited by 2030, as stated by the European Green Deal. Here, a novel and eco-sustainable nanostructured particle formulation (NPF) is presented by following the principles of the circular economy. Cellulose nanocrystals (CNC) and resistant starch were obtained from the bran of a high amylose (HA) bread wheat and employed as carrier and excipient, while chitosan and gallic acid were functionalized as antifungal and elicitor active principles. The NPF inhibited conidia germination and mycelium growth, and mechanically interacted with conidia. The NPF optimally reduced FHB and FCR symptoms in susceptible bread wheat genotypes while being biocompatible on plants. The expression level of 21 genes involved in the induction of innate immunity was investigated in Sumai3 (FHB resistant) Cadenza (susceptible) and Cadenza SBEIIa (a mutant characterized by high-amylose starch content) and most of them were up-regulated in Cadenza SBEIIa spikes treated with the NPF, indicating that this genotype may possess an interesting genomic background particularly responsive to elicitor-like molecules. Quantification of fungal biomass revealed that the NPF controlled FHB spread, while Cadenza SBEIIa was resistant to FCR fungal spread. The present research work highlights that the NPF is a powerful weapon for FHB sustainable management, while the genome of Cadenza SBEIIa should be investigated deeply as particularly responsive to elicitor-like molecules and resistant to FCR fungal spread.

3.
Plants (Basel) ; 12(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36840287

RESUMO

Nanotechnology is rapidly gaining ground in crop protection, with the growing quest for sustainable nanopesticides and nanocarriers for plant pathogen management. Among them, cellulose nanocrystals (CNC) are emerging as innovative agrofood-waste-derived antimicrobial materials. In this work, new chemical and enzymatic CNC extraction methods from tomato harvest residues were evaluated. The obtained nanomaterials were characterized and tested for their antimicrobial properties on Pseudomonas syringae pv. tomato (Pto), the causal agent of bacterial speck disease on tomato. Both protocols were efficient. The enzymatic extraction method was greener, producing purer CNC at slightly lower yield. The obtained CNC, although they weakly inhibited cell growth and did not promote reactive oxygen species (ROS) formation, provoked bacterial aggregation and the inhibition of biofilm production and swimming motility. Both protocols produced CNC with similar morpho-chemical features, as well as promising antimicrobial activity against plant bacterial pathogens, suggesting their potential role in sustainable crop protection strategies. The new protocols could be a valuable alternative to conventional methods.

4.
RSC Med Chem ; 12(7): 1046-1064, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34355177

RESUMO

Urea and thiourea represent privileged structures in medicinal chemistry. Indeed, these moieties constitute a common framework of a variety of drugs and bioactive compounds endowed with a broad range of therapeutic and pharmacological properties. Herein, we provide an overview of the state-of-the-art of urea and thiourea-containing pharmaceuticals. We also review the diverse approaches pursued for (thio)urea bioisosteric replacements in medicinal chemistry applications. Finally, representative examples of recent advances in the synthesis of urea- and thiourea-based compounds by enabling chemical tools are discussed.

5.
J Med Chem ; 64(13): 9525-9536, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165993

RESUMO

Non-alcoholic steatohepatitis (NASH) presents as an epidemic chronic liver disease that is closely associated with metabolic disorders and involves hepatic steatosis, inflammation, and fibrosis as key factors. Despite the enormous global prevalence of NASH, effective pharmacological interventions are lacking. Based on the hypothesis that the multifactorial condition NASH may benefit from combined multiple modes of action for enhanced therapeutic efficacy, we have previously developed dual FXR activators/sEH inhibitors (FXRa/sEHi) and observed remarkable antifibrotic effects upon their use in rodent NASH models. However, these first-generation FXRa/sEHi were characterized by moderate metabolic stability and short in vivo half-life. Aiming to overcome these pharmacokinetic drawbacks, we have systematically studied the structure-activity and structure-stability relationships of the chemotype and obtained second-generation FXRa/sEHi with improved pharmacokinetic parameters. With high plasma exposure, a half-life greater than 5 h, and similar dual potency on the intended targets, 13 presents as a substantially optimized FXRa/sEHi for late-stage preclinical development.


Assuntos
Benzamidas/farmacologia , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Benzamidas/síntese química , Benzamidas/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Epóxido Hidrolases/metabolismo , Células Hep G2 , Humanos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/genética , Relação Estrutura-Atividade
6.
J Med Chem ; 64(8): 5123-5136, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33793232

RESUMO

The retinoid X receptors (RXR) are ligand-activated transcription factors involved in multiple regulatory networks as universal heterodimer partners for nuclear receptors. Despite their high therapeutic potential in many pathologies, targeting of RXR has only been exploited in cancer treatment as the currently available RXR agonists suffer from exceptional lipophilicity, poor pharmacokinetics (PK), and adverse effects. Aiming to overcome the limitations and to provide improved RXR ligands, we developed a new potent RXR ligand chemotype based on the nonsteroidal anti-inflammatory drug oxaprozin. Systematic structure-activity relationship analysis enabled structural optimization toward low nanomolar potency similar to the well-established rexinoids. Cocrystal structures of the most active derivatives demonstrated orthosteric binding, and in vivo profiling revealed superior PK properties compared to current RXR agonists. The optimized compounds were highly selective for RXR activation and induced RXR-regulated gene expression in native cellular and in vivo settings suggesting them as excellent chemical tools to further explore the therapeutic potential of RXR.


Assuntos
Oxaprozina/análogos & derivados , Receptores X de Retinoides/agonistas , Animais , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Meia-Vida , Humanos , Ligantes , Camundongos , Microssomos/metabolismo , Simulação de Dinâmica Molecular , Oxaprozina/metabolismo , Oxaprozina/farmacologia , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Ratos , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Relação Estrutura-Atividade
7.
J Med Chem ; 63(7): 3701-3712, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32160459

RESUMO

Pregnane X receptor (PXR) is a master xenobiotic-sensing transcription factor and a validated target for immune and inflammatory diseases. The identification of chemical probes to investigate the therapeutic relevance of the receptor is still highly desired. In fact, currently available PXR ligands are not highly selective and can exhibit toxicity and/or potential off-target effects. In this study, we have identified garcinoic acid as a selective and efficient PXR agonist. The properties of this natural molecule as a specific PXR agonist were demonstrated by the screening on a panel of nuclear receptors, the assessment of the physical and thermodynamic binding affinity, and the determination of the PXR-garcinoic acid complex crystal structure. Cytotoxicity, transcriptional, and functional properties were investigated in human liver cells, and compound activity and target engagement were confirmed in vivo in mouse liver and gut tissue. In conclusion, garcinoic acid is a selective natural agonist of PXR and a promising lead compound toward the development of new PXR-regulating modulators.


Assuntos
Benzopiranos/farmacologia , Receptor de Pregnano X/agonistas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Benzopiranos/metabolismo , Benzopiranos/toxicidade , Linhagem Celular Tumoral , Cristalografia por Raios X , Citocromo P-450 CYP3A/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Receptor de Pregnano X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...