Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(9): 2681-2688, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408023

RESUMO

Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for lighting and display technologies owing to their high photoluminescence quantum efficiency and high carrier mobility. However, the performance of planar PeLEDs is limited by the out-coupling efficiency, predominantly governed by photonic losses at device interfaces. Most notably, the plasmonic loss at the metal electrode interfaces can account for up to 60% of the total loss. Here, we investigate the use of plasmonic nanostructures to improve the light out-coupling in PeLEDs. By integrating these nanostructures with PeLEDs, we have demonstrated an effectively reduced plasmonic loss and enhanced light out-coupling. As a result, the nanostructured PeLEDs exhibit an average 1.5-fold increase in external quantum efficiency and an ∼20-fold improvement in device lifetime. This finding offers a generic approach for enhancing light out-coupling, promising great potential to go beyond existing performance limitations.

2.
Adv Mater ; 36(13): e2303869, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37632843

RESUMO

High-performance perovskite solar cells (PSCs) typically require interfacial passivation, yet this is challenging for the buried interface, owing to the dissolution of passivation agents during the deposition of perovskites. Here, this limitation is overcome with in situ buried-interface passivation-achieved via directly adding a cyanoacrylic-acid-based molecular additive, namely BT-T, into the perovskite precursor solution. Classical and ab initio molecular dynamics simulations reveal that BT-T spontaneously may self-assemble at the buried interface during the formation of the perovskite layer on a nickel oxide hole-transporting layer. The preferential buried-interface passivation results in facilitated hole transfer and suppressed charge recombination. In addition, residual BT-T molecules in the perovskite layer enhance its stability and homogeneity. A power-conversion efficiency (PCE) of 23.48% for 1.0 cm2 inverted-structure PSCs is reported. The encapsulated PSC retains 95.4% of its initial PCE following 1960 h maximum-power-point tracking under continuous light illumination at 65 °C (i.e., ISOS-L-2I protocol). The demonstration of operating-stable PSCs under accelerated ageing conditions represents a step closer to the commercialization of this emerging technology.

3.
Front Optoelectron ; 16(1): 25, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747592

RESUMO

In lead halide perovskites, organic A-site cations are generally introduced to fine-tune the properties. One of the questions under debate is whether organic A-site cations are essential for high-performance solar cells. In this study, we compare the band edge carrier dynamics and diffusion process in MAPbBr3 and CsPbBr3 single-crystal microplates. By transient absorption microscopy, the band-edge carrier diffusion constants are unraveled. With the replacement of inorganic A-site cations, the diffusion constant in CsPbBr3 increases almost 8 times compared to that in MAPbBr3. This work reveals that introducing inorganic A-site cations can lead to a much larger diffusion length and improve the performance of band-edge carriers.

4.
Science ; 379(6629): 288-294, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36656941

RESUMO

High-quality perovskite light harvesters and robust organic hole extraction layers are essential for achieving high-performing perovskite solar cells (PSCs). We introduce a phosphonic acid-functionalized fullerene derivative in mixed-cation perovskites as a grain boundary modulator to consolidate the crystal structure, which enhances the tolerance of the film against illumination, heat, and moisture. We also developed a redox-active radical polymer, poly(oxoammonium salt), that can effectively p-dope the hole-transporting material by hole injection and that also mitigates lithium ion diffusion. Power conversion efficiencies of 23.5% for 1-square-centimeter mixed-cation-anion PSCs and 21.4% for 17.1-square-centimeter minimodules were achieved. The PSCs retained 95.5% of their initial efficiencies after 3265 hours at maximum power point tracking under continuous 1-sun illumination at 70° ± 5°C.

5.
Natl Sci Rev ; 9(11): nwac183, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381218

RESUMO

The uncontrollable formation of Li dendrites has become the biggest obstacle to the practical application of Li-metal anodes in high-energy rechargeable Li batteries. Herein, a unique LiF interlayer woven by millimeter-level, single-crystal and serrated LiF nanofibers (NFs) was designed to enable dendrite-free and highly efficient Li-metal deposition. This high-conductivity LiF interlayer can increase the Li+ transference number and induce the formation of 'LiF-NFs-rich' solid-electrolyte interface (SEI). In the 'LiF-NFs-rich' SEI, the ultra-long LiF nanofibers provide a continuously interfacial Li+ transport path. Moreover, the formed Li-LiF interface between Li-metal and SEI film renders low Li nucleation and high Li+ migration energy barriers, leading to uniform Li plating and stripping processes. As a result, steady charge-discharge in a Li//Li symmetrical cell for 1600 h under 4 mAh cm-2 and 400 stable cycles under a high area capacity of 5.65 mAh cm-2 in a high-loading Li//rGO-S cell at 17.9 mA cm-2 could be achieved. The free-standing LiF-NFs interlayer exhibits superior advantages for commercial Li batteries and displays significant potential for expanding the applications in solid Li batteries.

6.
Small Methods ; 6(6): e2200161, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35466596

RESUMO

Triple-mesoscopic perovskite solar cells (PSCs) have attracted intensive attention due to the high stability, simple fabrication process, and low material cost. In this structure, the perovskite layer is hosted by a triple-mesoscopic scaffold of TiO2 /ZrO2 /carbon, and thus the crystal quality is sensitive to the thermal annealing process. Typically, the annealing process is conducted in a petri dish, for which the solvent evaporation of the perovskite precursor is slowed down, but not controllable and designable. To control the solvent evaporation, annealing chambers are first designed with different shape and vapor releasing channels. Then, physical simulations are performed by a finite element method, and it is found out that the chamber with a crowned top and releasing channels on the bottom sides can realize homogeneous distribution of the solvent vapor. To verify the simulation results, chambers are fabricated by 3D printing technique, for which the printing deviation can be as low as 100 µm. By balancing the solvent evaporation and release, the optimal solvent evaporation is achieved of the perovskite precursor in the triple-mesoscopic scaffold. This work offers a method to obtain homogeneous distribution of solvent vapor, and provides a new insight into understanding the influence of solvent evaporation during the thermal annealing process for PSCs.

7.
Angew Chem Int Ed Engl ; 61(26): e202202012, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35393733

RESUMO

The planar SnO2 electron transport layer (ETL) has contributed to the reported power conversion efficiency (PCE) record of perovskite solar cells (PSCs), while the high-temperature mesoporous SnO2 ETL (mp-SnO2 ) brings poor device performance. Herein, we report the application of mp-SnO2 for efficient printable PSCs via oxygen vacancy (OV) management by introducing magnesium (Mg) into the paste. We find that high-temperature annealing suppresses self-doping of SnO2 by reducing OVs. The introduced Mg occupies both the Sn site and interstitial site of SnO2 and promotes the formation of OVs. Lattice Mg tends to induce neutral OVs and interstitial Mg could promote the ionization of neutral OVs for self-doping. The synergy effect on OVs increases the carrier density and upshifts the Fermi level energy of mp-SnO2 , ensuring its capability as the well-performed ETL with trap-less charge transport and suppressed surface recombination for dramatic improved device PCE from 6.62 % to 17.25 %.

8.
Chem Sci ; 13(8): 2167-2183, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35310498

RESUMO

Perovskite materials have been particularly eye-catching by virtue of their excellent properties such as high light absorption coefficient, long carrier lifetime, low exciton binding energy and ambipolar transmission (perovskites have the characteristics of transporting both electrons and holes). Limited by the wider band gap (1.55 eV), worse thermal stability and more defect states, the first widely used methylammonium lead iodide has been gradually replaced by formamidinium lead iodide (FAPbI3) with a narrower band gap of 1.48 eV and better thermal stability. However, FAPbI3 is stabilized as the yellow non-perovskite active phase at low temperatures, and the required black phase (α-FAPbI3) can only be obtained at high temperatures. In this perspective, we summarize the current efforts to stabilize α-FAPbI3, and propose that pure α-FAPbI3 is an ideal material for single-junction cells, and a triple-layer mesoporous architecture could help to stabilize pure α-FAPbI3. Furthermore, reducing the band gap and using tandem solar cells may ulteriorly approach the Shockley-Queisser limit efficiency. We also make a prospect that the enhancement of industrial applications as well as the lifetime of devices may help achieve commercialization of PSCs in the future.

9.
J Phys Chem Lett ; 13(9): 2144-2149, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35226499

RESUMO

Perovskite solar cells (PSCs) have achieved high efficiencies with diversified device architectures. In particular, printable mesoscopic PSC has attracted intensive research attention due to its simple fabrication process and superior stability. However, in the absence of hole conductors, the unfavorable energy band alignment between the perovskite and the carbon electrode usually leads to the reduction of device performance, especially the open-circuit voltage (VOC). Here, a p-type molecule, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), is utilized to post-treat the perovskite/carbon interface, which benefits the charge transfer and suppresses the charge recombination within the device. As a result, the post-treated device delivers a power conversion efficiency of 18.05% with an enhanced VOC of 1044 mV. This work provides a facile method for tuning the interfacial energy band alignment and improving performance of printable mesoscopic PSCs.

10.
Adv Sci (Weinh) ; 9(5): e2103948, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34923773

RESUMO

Mixed-halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite-based devices are still open questions. Here, the phase transformation of MAPb(I1- x Brx )3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type-I band alignment of segregated I-rich and Br-rich domains can enhance the emission of the I-rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br-rich to I-rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3 . The work highlights the significance of ion movements in mixed-halide perovskites and provides new perspectives to understand the property evolution.

11.
Chem Commun (Camb) ; 57(50): 6125-6128, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34075950

RESUMO

The anion exchange between MAPbX3 (X = I- or Br-) and MAX salts in a solution environment is investigated. We find that I- can enter MAPbBr3 single crystals (SC) in millimeter scale, while Br- can only penetrate the surface of MAPbI3 SC in a micrometer scale. Due to the lattice variation, the reaction is partially reversible.

12.
Nanomaterials (Basel) ; 10(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327634

RESUMO

During the past decade, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has risen rapidly, and it now approaches the record for single crystal silicon solar cells. However, these devices still suffer from a problem of stability. To improve PSC stability, two approaches have been notably developed: the use of additives and/or post-treatments that can strengthen perovskite structures and the use of a nontypical architecture where three mesoporous layers, including a porous carbon backcontact without hole transporting layer, are employed. This paper focuses on 5-ammonium valeric acid iodide (5-AVAI or AVA) as an additive in methylammonium lead iodide (MAPI). By combining scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence (TRPL), current-voltage measurements, ideality factor determination, and in-depth electrical impedance spectroscopy (EIS) investigations on various layers stacks structures, we discriminated the effects of a mesoscopic scaffold and an AVA additive. The AVA additive was found to decrease the bulk defects in perovskite (PVK) and boost the PVK resistance to moisture. The triple mesoporous structure was detrimental for the defects, but it improved the stability against humidity. On standard architecture, the PCE is 16.9% with the AVA additive instead of 18.1% for the control. A high stability of TiO2/ZrO2/carbon/perovskite cells was found due to both AVA and the protection by the all-inorganic scaffold. These cells achieved a PCE of 14.4% in the present work.

13.
J Phys Chem Lett ; 11(22): 9689-9695, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33136402

RESUMO

The all-inorganic CsPb(IxBr1-x)3 (0 ≤ x ≤ 1) perovskite solar cells (PSCs) are attractive by virtue of their high environmental and thermal stability. Nevertheless, multiple-step deposition and high annealing temperature (>250 °C) and the structural and optoelectronic properties changes upon temperature-dependent phase-transition are potential impediments for highly efficient and stable PSCs. Herein, a space-confined method to fabricate stable lower-order symmetric pure monoclinic CsPbBr3 phase at low temperature (<50 °C) is for the first time reported. It is found that the carbon-based mesoporous fully printable area can inhibit the phase transition to get a pure phase. Therefore, the device exhibits a power conversion efficiency of 7.52% with a low hysteresis index of 0.024. Moreover, the device passed the 1000 h 85 °C thermal test and the 200 cycles thermal cycling test according to IEC-61625 stability tests. These are critical progresses for achieving long-term stability and the stable pure inorganic perovskite phase of high-performance photovoltaics.

14.
Nano Lett ; 20(11): 8178-8184, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33125246

RESUMO

Stable electron transport materials (ETMs) with fewer surface defects and proper energy level alignments with halide perovskite active layers are required for efficient perovskite solar cells (PSCs) with long-term durability. Here, two-dimensional van der Waals mixed valence tin oxides Sn2O3 and Sn3O4 are controllably synthesized and applied as ETMs for planar PSCs. The synthesized Sn2O3 and Sn3O4 have size of 5-20 nm and disperse well in water as stable colloids for months. Both Sn2O3 and Sn3O4 exhibit typical n-type semiconductor energy band structures, low trap density, and suitable energy level alignments with halide perovskites. Steady-state power conversion efficiencies (PCEs) of 22.36% and 21.83% are obtained for Sn2O3-based and Sn3O4-based planar PSCs. In addition, the half cells without hole transport materials and back electrodes show good UV-stability with average PCE of 99.0% and 95.7% for Sn2O3-based and Sn3O4-based devices remaining after 1000 h of ultraviolet soaking with an intensity of 70 mW cm-2.

15.
Adv Mater ; 32(43): e2003990, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32954577

RESUMO

Perovskite solar cells (PSCs) have rapidly developed and achieved power conversion efficiencies of over 20% with diverse technical routes. Particularly, planar-structured PSCs can be fabricated with low-temperature (≤150 °C) solution-based processes, which is energy efficient and compatible with flexible substrates. Here, the efficiency and stability of planar PSCs are enhanced by improving the interface contact between the SnO2 electron-transport layer (ETL) and the perovskite layer. A biological polymer (heparin potassium, HP) is introduced to regulate the arrangement of SnO2 nanocrystals, and induce vertically aligned crystal growth of perovskites on top. Correspondingly, SnO2 -HP-based devices can demonstrate an average efficiency of 23.03% on rigid substrates with enhanced open-circuit voltage (VOC ) of 1.162 V and high reproducibility. Attributed to the strengthened interface binding, the devices obtain high operational stability, retaining 97% of their initial performance (power conversion efficiency, PCE > 22%) after 1000 h operation at their maximum power point under 1 sun illumination. Besides, the HP-modified SnO2 ETL exhibits promising potential for application in flexible and large-area devices.

16.
Chem Sci ; 11(2): 474-481, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32190267

RESUMO

Printable mesoscopic perovskite solar cells are usually fabricated by drop-casting perovskite precursor solution on a screen-printed mesoporous TiO2/ZrO2/carbon triple-layer followed by thermal annealing. They have attracted much attention due to their simple fabrication process and remarkable stability. However, challenges lie in how to achieve complete pore fillings of perovskites in the meso-pores and to obtain high-quality perovskite crystals. Here, we report an in situ crystal transfer (ICT) process based on gas-solid interaction to deposit perovskite CH3NH3PbI3 absorber in the scaffold. CH3NH3PbI3 single crystals are first transformed into a liquid phase via exposure to methylamine gas flow. After complete infiltration into the nano-structured scaffolds, the liquid phase is converted back to the solid phase with reduction of methylamine gas partial pressure, maintaining the high-quality of CH3NH3PbI3 single crystals. Compared with the conventional drop-casting method, the ICT method effectively leads to interconnected morphology and prolongs the charge-carrier lifetime (from ∼37.52 ns to ∼110.85 ns) of the perovskite absorber in the scaffold. As a result, the devices can deliver a power conversion efficiency of 15.89%, which is attributed to the suppressed charge recombination and correspondingly enhanced open-circuit voltage of 0.98 V.

17.
Front Optoelectron ; 13(3): 256-264, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36641571

RESUMO

Over the last decade, the power conversion efficiency of hybrid organic-inorganic perovskite solar cells (PSCs) has increased dramatically from 3.8% to 25.2%. This rapid progress has been possible due to the accurate control of the morphology and crystallinity of solution-processed perovskites, which are significantly affected by the concentration of the precursor used. This study explores the influence of precursor concentrations on the performance of printable hole-conductor-free mesoscopic PSCs via a simple one-step drop-coating method. The results reveal that lower concentrations lead to larger grains with inferior pore filling, while higher concentrations result in smaller grains with improved pore filling. Among concentrations ranging from 0.24-1.20 M1), devices based on a moderate strength of 0.70 M were confirmed to exhibit the best efficiency at 16.32%.

18.
J Phys Chem Lett ; 10(21): 6865-6872, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31599595

RESUMO

Solution-processable organic-inorganic perovskite solar cells have attracted much attention in the past few years. Energy level alignment is of great importance for improving the performance of perovskite solar cells because it strongly influences charge separation and recombination. In this report, we introduce three amide additives, namely, formamide, acetamide, and urea, into the MAPbI3 perovskite by mixing them directly in perovskite precursor solutions. The Fermi level of MAPbI3 shifts from -4.36 eV to -4.63, -4.65, and -4.61 eV, respectively, upon addition of these additives. The charge transfer between perovskite and mp-TiO2 is found to be promoted as determined via TRPL spectra, and recombination in the perovskite is suppressed. As a result, the built-in electric field (Vbi) of the printable, hole-conductor-free mesoscopic perovskite solar cells based on these perovskites with amide additives is enhanced and a peak power conversion efficiency of 15.57% is obtained.

19.
ACS Appl Mater Interfaces ; 11(37): 33879-33885, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31438676

RESUMO

Hexagonal selenium with a direct band gap has been developed for optoelectronic applications for more than one century. The major advances in Se solar cells have been made using vacuum or solution-based processing methods. In this work, we demonstrate a new two-stage melt processing (TSMP) method for incorporating Se in printable triple mesoscopic solar cells in the ambient conditions. It is observed that polymerization and depolymerization between several types of selenium chains are simultaneously triggered during the melt processing, from which phase-pure hexagonal selenium is formed in the mesopores of solar cells with high crystallinity. The TSMP method has positive effects on the conduction-band energy level, band gap, and crystal phase of as-deposited Se, as revealed UV electron spectroscopy, UV-vis absorption spectroscopy, and in situ X-ray diffraction. The TSMP-based printable mesoscopic selenium solar cells show a power conversion efficiency of 2%, which is eight times that for devices based on the single-stage melting processing. These findings open up a new research direction of melting processing toward more efficient photovoltaic devices.

20.
Chem Commun (Camb) ; 55(19): 2765-2768, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30768077

RESUMO

A low-temperature carbon electrode with good perovskite compatibility is employed in hole-transport-material free perovskite solar cells, and a champion power conversion efficiency (PCE) of 11.7% is obtained. The PCE is enhanced to 14.55% by an interface modification of PEDOT:PSS. The application of this carbon on ITO/PEN substrates is also demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...