Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(23)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38099554

RESUMO

For photosensitive polyurethane systems, reactive diluents are indispensable components whose main role is to reduce the viscosity of the polyurethane prepolymer to meet the requirements of the photocurable 3D printing technology for high fluidity of the precursor solution. Generally, the reactive diluent would be involved in the photocuring reaction, which in turn has a remarkable impact on the mechanical, reaction kinetics, and thermodynamic characteristics of the photosensitive polyurethane system. However, this feature is usually neglected in the study of photosensitive urethane acrylate (PUA) systems, so there is a considerable necessity to investigate the mechanism of active diluents in the photocured reaction of PUA systems. In this work, the effects of α-methyl groups along the chains of diluent molecules on the photoreaction kinetics, photocurable 3D printing, mechanical and mechanical properties, and thermodynamic characteristics of PUAs were investigated employing hydroxyethyl methacrylate and hydroxyethyl acrylate as active diluents, respectively. The relationship between chemical structure and kinetics of PUA systems was also elucidated by using dynamic mechanical analysis tests. The results demonstrated that the α-methyl group blocks the migration of reactive radicals, reduces the efficiency of the photoreaction, and causes an increase in the rigidity and strength of the molecular chain. This study not only revealed the effect of α-methyl on the kinetic mechanical and thermal performance of PUA systems but also paves the way for the development of a new class of photosensitive PUA materials used for the photocurable 3D printing technology.

2.
Macromol Rapid Commun ; 44(18): e2300211, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37294875

RESUMO

In recent years, as a class of advanced additive manufacturing (AM) technology, photocurable 3D printing has gained increasing attention. Based on its outstanding printing efficiency and molding accuracy, it is employed in various fields, such as industrial manufacturing, biomedical, soft robotics, electronic sensors. Photocurable 3D printing is a molding technology based on the principle of area-selective curing of photopolymerization reaction. At present, the main printing material suitable for this technology is the photosensitive resin, a composite mixture consisting of a photosensitive prepolymer, reactive monomer, photoinitiator, and other additives. As the technique research deepens and its application gets more developed, the design of printing materials suitable for different applications is becoming the hotspot. Specifically, these materials not only can be photocured but also have excellent properties, such as elasticity, tear resistance, fatigue resistance. Photosensitive polyurethanes can endow photocured resin with desirable performance due to their unique molecular structure including the inherent alternating soft and hard segments, and microphase separation. For this reason, this review summarizes and comments on the research and application progress of photocurable 3D printing of photosensitive polyurethanes, analyzing the advantages and shortcomings of this technology, also offering an outlook on this rapid development direction.


Assuntos
Poliuretanos , Impressão Tridimensional
3.
Macromol Biosci ; 22(4): e2100455, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35076165

RESUMO

Photocurable 3D printing of polyphenol-based gels has been limited by the catechol groups, which can scavenge free radicals generated by photoinitiators during photopolymerization. Herein, a 3D-printed gel composed of poly-acrylamide (PAM) and tannic acid (TA) is presented, fabricated by using glycerol as shielding of TA and a commercial digital light processing printer. The printed gels are based on a polymeric network interpenetrated by TA-glycerol, enabling the printed objects with various favorable properties, such as improved toughness, anti-dehydration, antioxidant and antibacterial properties, etc. The proposed strategy enables photocurable 3D printing of polyphenol-based gels with complex architecture, paving the way for future applications in various fields, ranging from soft wearable devices to tissue engineering.


Assuntos
Glicerol , Taninos , Hidrogéis , Polifenóis , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA