Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 7(6): 4669-4709, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28788700

RESUMO

Nanotechnology has played a crucial role in the development of biosensors over the past decade. The development, testing, optimization, and validation of new biosensors has become a highly interdisciplinary effort involving experts in chemistry, biology, physics, engineering, and medicine. The sensitivity, the specificity and the reproducibility of biosensors have improved tremendously as a result of incorporating nanomaterials in their design. In general, nanomaterials-based electrochemical immunosensors amplify the sensitivity by facilitating greater loading of the larger sensing surface with biorecognition molecules as well as improving the electrochemical properties of the transducer. The most common types of nanomaterials and their properties will be described. In addition, the utilization of nanomaterials in immunosensors for biomarker detection will be discussed since these biosensors have enormous potential for a myriad of clinical uses. Electrochemical immunosensors provide a specific and simple analytical alternative as evidenced by their brief analysis times, inexpensive instrumentation, lower assay cost as well as good portability and amenability to miniaturization. The role nanomaterials play in biosensors, their ability to improve detection capabilities in low concentration analytes yielding clinically useful data and their impact on other biosensor performance properties will be discussed. Finally, the most common types of electroanalytical detection methods will be briefly touched upon.

2.
Sensors (Basel) ; 13(4): 4811-40, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23580051

RESUMO

The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Eletroquímica/instrumentação , Eletroquímica/métodos , Enzimas Imobilizadas/metabolismo , Nanoestruturas/química , Ouro/química , Grafite/química
3.
Chem Soc Rev ; 39(5): 1747-63, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20419217

RESUMO

Electrochemical biosensors combine the sensitivity of electroanalytical methods with the inherent bioselectivity of the biological component. The biological component in the sensor recognizes its analyte resulting in a catalytic or binding event that ultimately produces an electrical signal monitored by a transducer that is proportional to analyte concentration. Some of these sensor devices have reached the commercial stage and are routinely used in clinical, environmental, industrial, and agricultural applications. The two classes of electrochemical biosensors, biocatalytic devices and affinity sensors, will be discussed in this critical review to provide an accessible introduction to electrochemical biosensors for any scientist (110 references).


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Biocatálise , Técnicas Biossensoriais/instrumentação , DNA/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Enzimas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...