Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 32(29): e2001033, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32537877

RESUMO

Extreme miniaturization is known to be detrimental for certain properties, such as ferroelectricity in perovskite oxide films below a critical thickness. Remarkably, few-layer crystalline films of monochalcogenides display robust in-plane ferroelectricity with potential applications in nanoelectronics. These applications critically depend on the electronic properties and the nature of bonding in the 2D limit. A fundamental open question is thus to what extent bulk properties persist in thin films. Here, this question is addressed by a first-principles study of the structural, electronic, and ferroelectric properties of selected monochalcogenides (GeSe, GeTe, SnSe, and SnTe) as a function of film thickness up to 18 bilayers. While in selenides a few bilayers are sufficient to recover the bulk behavior, the Te-based compounds deviate strongly from the bulk, irrespective of the slab thickness. These results are explained in terms of depolarizing fields in Te-based slabs and the different nature of the chemical bond in selenides and tellurides. It is shown that GeTe and SnTe slabs inherit metavalent bonding of the bulk phase, despite structural and electronic properties being strongly modified in thin films. This understanding of the nature of bonding in few-layers structures offers a powerful tool to tune materials properties for applications in information technology.

2.
Science ; 364(6445): 1062-1067, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31197008

RESUMO

In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid-liquid phase transition in the phase-change materials Ag4In3Sb67Te26 and Ge15Sb85 at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. This reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics.

3.
Nat Mater ; 17(8): 681-685, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29915424

RESUMO

Phase change memory has been developed into a mature technology capable of storing information in a fast and non-volatile way1-3, with potential for neuromorphic computing applications4-6. However, its future impact in electronics depends crucially on how the materials at the core of this technology adapt to the requirements arising from continued scaling towards higher device densities. A common strategy to fine-tune the properties of phase change memory materials, reaching reasonable thermal stability in optical data storage, relies on mixing precise amounts of different dopants, resulting often in quaternary or even more complicated compounds6-8. Here we show how the simplest material imaginable, a single element (in this case, antimony), can become a valid alternative when confined in extremely small volumes. This compositional simplification eliminates problems related to unwanted deviations from the optimized stoichiometry in the switching volume, which become increasingly pressing when devices are aggressively miniaturized9,10. Removing compositional optimization issues may allow one to capitalize on nanosize effects in information storage.


Assuntos
Equipamentos e Provisões Elétricas , Antimônio , Condutividade Elétrica
4.
Nanoscale ; 10(16): 7363-7368, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29637969

RESUMO

The recently discovered two-dimensional (2D) group IV chalcogenides attract much attention owing to their novel electronic and photonic properties. All the reported materials of this class favor (distorted) octahedral coordination via p bonding; by contrast, in the dichalcogenides where the bonding tendency approaches sp3, no corresponding 2D phase has been realized so far. Here, by engineering the composition of a chalcogenide heterostructure, the hitherto elusive GeTe2 is experimentally observed in a confined 2D environment. Density functional theory simulations predict the existence of a freestanding monolayer of octahedrally coordinated GeTe2 under tensile strain, and the existence of GeSe2 and GeS2 in the same form under equilibrium conditions. These 2D germanium dichalcogenides are either metallic or narrow gap semiconducting, and may lead to new applications in nanoscale electronics.

5.
Science ; 358(6369): 1423-1427, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29123020

RESUMO

Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge2Sb2Te5). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc0.2Sb2Te3) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems.

6.
Sci Rep ; 4: 6529, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25284316

RESUMO

Phase-change materials are technologically important due to their manifold applications in data storage. Here we report on ab initio molecular dynamics simulations of crystallization of the phase change material Ag4In3Sb67Te26 (AIST). We show that, at high temperature, the observed crystal growth mechanisms and crystallization speed are in good agreement with experimental data. We provide an in-depth understanding of the crystallization mechanisms at the atomic level. At temperatures below 550 K, the computed growth velocities are much higher than those obtained from time-resolved reflectivity measurements, due to large deviations in the diffusion coefficients. As a consequence of the high fragility of AIST, experimental diffusivities display a dramatic increase in activation energies and prefactors at temperatures below 550 K. This property is essential to ensure fast crystallization at high temperature and a stable amorphous state at low temperature. On the other hand, no such change in the temperature dependence of the diffusivity is observed in our simulations, down to 450 K. We also attribute this different behavior to the fragility of the system, in combination with the very fast quenching times employed in the simulations.

7.
Adv Mater ; 24(32): 4387-91, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22753225

RESUMO

First-principles study of the structural and magnetic properties of cubic and amorphous phase-change materials doped with 3d impurities. We find that Co- and Ni-doped Ge(2) Sb(2) Te(5) is non-magnetic, whereas Cr- and Mn-doped Ge(2) Sb(2) Te(5) is magnetic and exhibits a significant magnetic contrast between the two phases in the ferromagnetic configuration. These results are explained in terms of differences in local structure and hybridization of the impurity d-orbitals with the host states.


Assuntos
Antimônio/química , Germânio/química , Magnetismo , Manufaturas , Telúrio/química , Cromo/química , Cobalto/química , Cristalização , Manganês/química , Níquel/química , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...