Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 22: 100766, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32337376

RESUMO

Many cellulose degrading and modifying enzymes have distinct parts called carbohydrate binding modules (CBMs). The CBMs have been shown to increase the concentration of enzymes on the insoluble substrate and thereby enhance catalytic activity. It has been suggested that CBMs also have a role in disrupting or dispersing the insoluble cellulose substrate, but dispute remains and explicit evidence of such a mechanism is lacking. We produced the isolated CBMs from two major cellulases (Cel6A and Cel7A) from Trichoderma reesei as recombinant proteins in Escherichia coli. We then studied the viscoelastic properties of native unmodified cellulose nanofibrils (CNF) in combination with the highly purified CBMs to detect possible functional effects of the CBMs on the CNF. The two CBMs showed clearly different effects on the viscoelastic properties of CNF. The difference in effects is noteworthy, yet it was not possible to conclude for example disruptive effects. We discuss here the alternative explanations for viscoelastic effects on CNF caused by CBMs, including the effect of ionic cosolutes.

2.
Biomacromolecules ; 20(2): 769-777, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30657665

RESUMO

In this study, the interaction forces between different cellulosic nanomaterials and a protein domain belonging to cellulose binding modules family 1 (CBM1) were investigated at the molecular scale. Cellulose binding modules are protein domains found in carbohydrate active enzymes having an affinity toward cellulosic materials. Here, the binding force of a fusion protein containing a cellulose binding module (CBM1) produced recombinantly in E. coli was quantified on different cellulose nanocrystals immobilized on surfaces. Adhesion of the CBM on cellulose with different degrees of crystallinity as well as on chitin nanocrystals was examined. This study was carried out by single molecule force spectroscopy using an atomic force microscope, which enables the detection of binding force of individual molecules. The study contains a preliminary quantification of the interactions at the molecular level that sheds light on the development of new nanocellulose-based nanocomposites with improved strength and elasticity.


Assuntos
Celulases/metabolismo , Celulose/química , Nanoestruturas/química , Aderência Bacteriana , Celulases/química , Quitina/análogos & derivados , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligação Proteica , Domínios Proteicos
3.
PLoS One ; 13(5): e0197875, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29782536

RESUMO

Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain's sequence-function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed.


Assuntos
Celulose/metabolismo , Quitina/metabolismo , Haptófitas , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Genômica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...