Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Sci Rep ; 14(1): 20701, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237647

RESUMO

The Gram-negative bacterium Klebsiella pneumoniae is an important human pathogen. Its treatment has been complicated by the emergence of multi-drug resistant strains. The human complement system is an important part of our innate immune response that can directly kill Gram-negative bacteria by assembling membrane attack complex (MAC) pores into the bacterial outer membrane. To resist this attack, Gram-negative bacteria can modify their lipopolysaccharide (LPS). Especially the decoration of the LPS outer core with the O-antigen polysaccharide has been linked to increased bacterial survival in serum, but not studied in detail. In this study, we characterized various clinical Klebsiella pneumoniae isolates and show that expression of the LPS O1-antigen correlates with resistance to complement-mediated killing. Mechanistic data reveal that the O1-antigen does not inhibit C3b deposition and C5 conversion. In contrast, we see more efficient formation of C5a, and deposition of C6 and C9 when an O-antigen is present. Further downstream analyses revealed that the O1-antigen prevents correct insertion and polymerization of the final MAC component C9 into the bacterial membrane. Altogether, we show that the LPS O1-antigen is a key determining factor for complement resistance by K. pneumoniae and provide insights into the molecular basis of O1-mediated MAC evasion.


Assuntos
Complemento C9 , Klebsiella pneumoniae , Antígenos O , Klebsiella pneumoniae/imunologia , Antígenos O/imunologia , Antígenos O/metabolismo , Humanos , Complemento C9/metabolismo , Complemento C9/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Lipopolissacarídeos , Polimerização , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Complemento C3b/metabolismo , Complemento C3b/imunologia
2.
Nat Commun ; 15(1): 8100, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285158

RESUMO

Antibody-dependent complement activation plays a key role in the natural human immune response to infections. Currently, the understanding of which antibody-antigen combinations drive a potent complement response on bacteria is limited. Here, we develop an antigen-agnostic approach to stain and single-cell sort human IgG memory B cells recognizing intact bacterial cells, keeping surface antigens in their natural context. With this method we successfully identified 29 antibodies against K. pneumoniae, a dominant cause of hospital-acquired infections with increasing antibiotic resistance. Combining genetic tools and functional analyses, we reveal that the capacity of antibodies to activate complement on K. pneumoniae critically depends on their antigenic target. Furthermore, we find that antibody combinations can synergistically activate complement on K. pneumoniae by strengthening each other's binding in an Fc-independent manner. Understanding the molecular basis of effective complement activation by antibody combinations to mimic a polyclonal response could accelerate the development of antibody-based therapies against problematic infections.


Assuntos
Anticorpos Antibacterianos , Ativação do Complemento , Imunoglobulina G , Klebsiella pneumoniae , Humanos , Ativação do Complemento/imunologia , Anticorpos Antibacterianos/imunologia , Klebsiella pneumoniae/imunologia , Imunoglobulina G/imunologia , Linfócitos B/imunologia , Células B de Memória/imunologia
3.
Cell Rep Med ; 5(9): 101734, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39293400

RESUMO

Staphylococcus aureus is a major human pathogen, yet the immune factors that protect against infection remain elusive. High titers of opsonic IgG antibodies, achieved in preclinical animal immunization studies, have consistently failed to provide protection in humans. Here, we investigate antibody responses to the conserved S. aureus surface glycan wall teichoic acid (WTA) and detect the presence of WTA-specific IgM and IgG antibodies in the plasma of healthy individuals. Functionally, WTA-specific IgM outperforms IgG in opsonophagocytic killing of S. aureus and protects against disseminated S. aureus bacteremia through passive immunization. In a clinical setting, patients with S. aureus bacteremia have significantly lower WTA-specific IgM but similar IgG levels compared to healthy controls. Importantly, low WTA-IgM levels correlate with disease mortality and impaired bacterial opsonization. Our findings may guide risk stratification of hospitalized patients and inform future design of antibody-based therapies and vaccines against serious S. aureus infection.


Assuntos
Anticorpos Antibacterianos , Imunoglobulina G , Imunoglobulina M , Polissacarídeos , Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/imunologia , Imunoglobulina M/imunologia , Imunoglobulina M/sangue , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/sangue , Polissacarídeos/imunologia , Ácidos Teicoicos/imunologia , Animais , Feminino , Masculino , Fagocitose/imunologia , Bacteriemia/imunologia , Bacteriemia/microbiologia , Camundongos , Adulto , Pessoa de Meia-Idade , Opsonização/imunologia
4.
J Am Soc Mass Spectrom ; 35(6): 1320-1329, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767111

RESUMO

Immunoglobulins M (IgM) are key natural antibodies produced initially in humoral immune response. Due to their large molecular weights and extensive glycosylation loads, IgMs represent a challenging target for conventional mass analysis. Charge detection mass spectrometry (CDMS) may provide a unique approach to tackle heterogeneous IgM assemblies, although this technique can be quite laborious and technically challenging. Here, we describe the use of online size exclusion chromatography (SEC) to automate buffer exchange and sample introduction, and demonstrate its adaptability with Orbitrap-based CDMS. We discuss optimal experimental parameters for online SEC-CDMS experiments, including ion activation, choice of column, and resolution. Using this approach, CDMS histograms containing hundreds of individual ion signals can be obtained in as little as 5 min from single injections of <1 µg of sample. To demonstrate the unique utility of online SEC-CDMS, we performed real-time kinetic monitoring of pentameric IgM digestion by the protease IgMBRAZOR, which cleaves specifically in the hinge region of IgM. Several digestion intermediates corresponding to processive losses of F(ab')2 subunits could be mass-resolved and identified by SEC-CDMS. Interestingly, we find that for the J-chain linked IgM pentamer, cleavage of one of the F(ab')2 subunits is much slower than the other four F(ab')2 subunits, which we attribute to the symmetry-breaking interactions of the J-chain within the pentameric IgM structure. The online SEC-CDMS methodologies described here open new avenues into the higher throughput automated analysis of heterogeneous, high-mass protein assemblies by CDMS.


Assuntos
Cromatografia em Gel , Imunoglobulina M , Espectrometria de Massas , Imunoglobulina M/química , Imunoglobulina M/análise , Cromatografia em Gel/métodos , Espectrometria de Massas/métodos , Humanos
5.
J Proteome Res ; 23(6): 2124-2136, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38701233

RESUMO

Using proteomics and complexome profiling, we evaluated in a year-long study longitudinal variations in the plasma proteome of kidney failure patients, prior to and after a kidney transplantation. The post-transplant period was complicated by bacterial infections, resulting in dramatic changes in the proteome, attributed to an acute phase response (APR). As positive acute phase proteins (APPs), being elevated upon inflammation, we observed the well-described C-reactive protein and Serum Amyloid A (SAA), but also Fibrinogen, Haptoglobin, Leucine-rich alpha-2-glycoprotein, Lipopolysaccharide-binding protein, Alpha-1-antitrypsin, Alpha-1-antichymotrypsin, S100, and CD14. As negative APPs, being downregulated upon inflammation, we identified the well-documented Serotransferrin and Transthyretin, but added Kallistatin, Heparin cofactor 2, and interalpha-trypsin inhibitor heavy chain H1 and H2 (ITIH1, ITIH2). For the patient with the most severe APR, we performed plasma complexome profiling by SEC-LC-MS on all longitudinal samples. We observed that several plasma proteins displaying alike concentration patterns coelute and form macromolecular complexes. By complexome profiling, we expose how SAA1 and SAA2 become incorporated into high-density lipid particles, replacing largely Apolipoprotein (APO)A1 and APOA4. Overall, our data highlight that the combination of in-depth longitudinal plasma proteome and complexome profiling can shed further light on correlated variations in the abundance of several plasma proteins upon inflammatory events.


Assuntos
Proteínas Sanguíneas , Transplante de Rim , Proteoma , Humanos , Transplante de Rim/efeitos adversos , Proteoma/análise , Proteoma/metabolismo , Estudos Longitudinais , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Proteínas de Fase Aguda/metabolismo , Pessoa de Meia-Idade , Masculino , Proteômica/métodos , Feminino , Insuficiência Renal/sangue , Reação de Fase Aguda/sangue , Adulto
6.
Nat Commun ; 15(1): 2007, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453922

RESUMO

Monoclonal IgG antibodies constitute the fastest growing class of therapeutics. Thus, there is an intense interest to design more potent antibody formats, where long plasma half-life is a commercially competitive differentiator affecting dosing, frequency of administration and thereby potentially patient compliance. Here, we report on an Fc-engineered variant with three amino acid substitutions Q311R/M428E/N434W (REW), that enhances plasma half-life and mucosal distribution, as well as allows for needle-free delivery across respiratory epithelial barriers in human FcRn transgenic mice. In addition, the Fc-engineered variant improves on-target complement-mediated killing of cancer cells as well as both gram-positive and gram-negative bacteria. Hence, this versatile Fc technology should be broadly applicable in antibody design aiming for long-acting prophylactic or therapeutic interventions.


Assuntos
Neoplasias , Receptores Fc , Camundongos , Animais , Humanos , Imunoglobulina G , Meia-Vida , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Camundongos Transgênicos , Anticorpos Monoclonais , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/terapia , Neoplasias/tratamento farmacológico
7.
Proc Natl Acad Sci U S A ; 120(50): e2310666120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048459

RESUMO

Autoantibodies directed against complement component C1q are commonly associated with autoimmune diseases, especially systemic lupus erythematosus. Importantly, these anti-C1q autoantibodies are specific for ligand-bound, solid-phase C1q and do not bind to fluid-phase C1q. In patients with anti-C1q, C1q levels are in the normal range, and the autoantibodies are thus not depleting. To study these human anti-C1q autoantibodies at the molecular level, we isolated C1q-reactive B cells and recombinantly produced nine monoclonal antibodies (mAbs) from four different healthy individuals. The isolated mAbs were of the IgG isotype, contained extensively mutated variable domains, and showed high affinity to the collagen-like region of C1q. The anti-C1q mAbs exclusively bound solid-phase C1q in complex with its natural ligands, including immobilized or antigen-bound IgG, IgM or CRP, and necrotic cells. Competition experiments reveal that at least 2 epitopes, also targeted by anti-C1q antibodies in sera from SLE patients, are recognized. Electron microscopy with hexameric IgG-C1q immune complexes demonstrated that multiple mAbs can interact with a single C1q molecule and identified the region of C1q targeted by these mAbs. The opsonization of immune complexes with anti-C1q greatly enhanced Fc-receptor-mediated phagocytosis but did not increase complement activation. We conclude that human anti-C1q autoantibodies specifically bind neo-epitopes on solid-phase C1q, which results in an increase in Fc-receptor-mediated effector functions that may potentially contribute to autoimmune disease immunopathology.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , Autoanticorpos , Complemento C1q , Complexo Antígeno-Anticorpo , Ativação do Complemento , Fagocitose , Epitopos , Imunoglobulina G
8.
Proc Natl Acad Sci U S A ; 120(50): e2311265120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055740

RESUMO

Immunoglobulin M (IgM) is an evolutionary conserved key component of humoral immunity, and the first antibody isotype to emerge during an immune response. IgM is a large (1 MDa), multimeric protein, for which both hexameric and pentameric structures have been described, the latter additionally containing a joining (J) chain. Using a combination of single-particle mass spectrometry and mass photometry, proteomics, and immunochemical assays, we here demonstrate that circulatory (serum) IgM exclusively exists as a complex of J-chain-containing pentamers covalently bound to the small (36 kDa) protein CD5 antigen-like (CD5L, also called apoptosis inhibitor of macrophage). In sharp contrast, secretory IgM in saliva and milk is principally devoid of CD5L. Unlike IgM itself, CD5L is not produced by B cells, implying that it associates with IgM in the extracellular space. We demonstrate that CD5L integration has functional implications, i.e., it diminishes IgM binding to two of its receptors, the FcαµR and the polymeric Immunoglobulin receptor. On the other hand, binding to FcµR as well as complement activation via C1q seem unaffected by CD5L integration. Taken together, we redefine the composition of circulatory IgM as a J-chain containing pentamer, always in complex with CD5L.


Assuntos
Linfócitos B , Cadeias J de Imunoglobulina , Imunoglobulina M/metabolismo , Cadeias J de Imunoglobulina/metabolismo , Linfócitos B/metabolismo , Antígenos , Macrófagos/metabolismo
9.
Sci Rep ; 13(1): 18836, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914798

RESUMO

Antibodies play a key role in the immune defence against Gram-negative bacteria. After binding to bacterial surface antigens, IgG and IgM can activate the complement system and trigger formation of lytic membrane attack complex (MAC) pores. Molecular studies to compare functional activity of antibodies on bacteria are hampered by the limited availability of well-defined antibodies against bacterial surface antigens. Therefore, we genetically engineered E. coli by expressing the StrepTagII antigen into outer membrane protein X (OmpX) and validated that these engineered bacteria were recognised by anti-StrepTagII antibodies. We then combined this antigen-antibody system with a purified complement assay to avoid interference of serum components and directly compare MAC-mediated bacterial killing via IgG1 and pentameric IgM. While both IgG1 and IgM could induce MAC-mediated killing, we show that IgM has an increased capacity to induce complement-mediated killing of E. coli compared to IgG1. While Fc mutations that enhance IgG clustering after target binding could not improve MAC formation, mutations that cause formation of pre-assembled IgG hexamers enhanced the complement activating capacity of IgG1. Altogether, we here present a system to study antibody-dependent complement activation on E. coli and show IgM's enhanced capacity over IgG to induce complement-mediated lysis of E. coli.


Assuntos
Anticorpos Monoclonais , Escherichia coli , Escherichia coli/metabolismo , Anticorpos Monoclonais/metabolismo , Proteínas do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Ativação do Complemento , Imunoglobulina G , Antígenos de Superfície/metabolismo , Imunoglobulina M/metabolismo
10.
Viruses ; 15(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-38005888

RESUMO

Therapeutic bacteriophages (phages) are primarily chosen based on their in vitro bacteriolytic activity. Although anti-phage antibodies are known to inhibit phage infection, the influence of other immune system components is less well known. An important anti-bacterial and anti-viral innate immune system that may interact with phages is the complement system, a cascade of proteases that recognizes and targets invading microorganisms. In this research, we aimed to study the effects of serum components such as complement on the infectivity of different phages targeting Pseudomonas aeruginosa. We used a fluorescence-based assay to monitor the killing of P. aeruginosa by phages of different morphotypes in the presence of human serum. Our results reveal that several myophages are inhibited by serum in a concentration-dependent way, while the activity of four podophages and one siphophage tested in this study is not affected by serum. By using specific nanobodies blocking different components of the complement cascade, we showed that activation of the classical complement pathway is a driver of phage inhibition. To determine the mechanism of inhibition, we produced bioorthogonally labeled fluorescent phages to study their binding by means of microscopy and flow cytometry. We show that phage adsorption is hampered in the presence of active complement. Our results indicate that interactions with complement may affect the in vivo activity of therapeutically administered phages. A better understanding of this phenomenon is essential to optimize the design and application of therapeutic phage cocktails.


Assuntos
Bacteriófagos , Infecções por Pseudomonas , Fagos de Pseudomonas , Humanos , Pseudomonas aeruginosa/fisiologia , Fagos de Pseudomonas/fisiologia , Bacteriólise , Infecções por Pseudomonas/terapia , Infecções por Pseudomonas/microbiologia
11.
Immunohorizons ; 7(11): 806-818, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38032267

RESUMO

The extracellular region of the complement receptor of the Ig superfamily (CRIg) binds to certain C3 cleavage products (C3b, iC3b, C3c) and inhibits the alternative pathway (AP) of complement. In this study, we provide further insight into the CRIg protein and describe two CRIg mutants that lack multiple lysine residues as a means of facilitating chemical modifications of the protein. Structural analyses confirmed preservation of the native CRIg architecture in both mutants. In contrast to earlier reports suggesting that CRIg binds to C3b with an affinity of ∼1 µM, we found that wild-type CRIg binds to C3b and iC3b with affinities <100 nM, but to C3c with an affinity closer to 1 µM. We observed this same trend for both lysine substitution mutants, albeit with an apparent ∼2- to 3-fold loss of affinity when compared with wild-type CRIg. Using flow cytometry, we confirmed binding to C3 fragment-opsonized Staphylococcus aureus cells by each mutant, again with an ∼2- to 3-fold decrease when compared with wild-type. Whereas wild-type CRIg inhibits AP-driven lysis of rabbit erythrocytes with an IC50 of 1.6 µM, we observed an ∼3-fold reduction in inhibition for both mutants. Interestingly, we found that amine-reactive crosslinking of the CRIg mutant containing only a single lysine results in a significant improvement in inhibitory potency across all concentrations examined when compared with the unmodified mutant, but in a manner sensitive to the length of the crosslinker. Collectively, our findings provide new insights into the CRIg protein and suggest an approach for engineering increasingly potent CRIg-based inhibitors of the AP.


Assuntos
Lisina , Receptores de Complemento , Animais , Coelhos , Receptores de Complemento/genética , Aminas , Complemento C3b , Eritrócitos
12.
J Immunol ; 211(11): 1725-1735, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37843500

RESUMO

Complement activation via the classical pathway is initiated when oligomeric Igs on target surfaces are recognized by C1 of the complement cascade. The strength of this interaction and activation of the complement system are influenced by structural variation of the Ab, including Ab isotype, subclass, and glycosylation profile. Polymorphic variants of IgG have also been described to influence Fc-dependent effector functions. Therefore, we assessed complement binding, deposition, and complement-dependent cytotoxicity (CDC) of 27 known IgG allotypes with anti-trinitrophenyl specificity. Differences between allotypes within subclasses were minor for IgG1, IgG3, and IgG4 allotypes, and more substantial for IgG2. Allelic variant IGHG2*06, containing a unique serine at position 378 in the CH3 domain, showed less efficient complement activation and CDC compared with other IgG2 polymorphisms. We also observed variable cell lysis between IgG1 and IgG3, with IgG3 being superior in lysis of human RBCs and Ramos cells, and IgG1 being superior in lysis of Raji and Wien133 cells, demonstrating that a long-standing conundrum in the literature depends on cellular context. Furthermore, we compared IgG1 and IgG3 under different circumstances, showing that Ag density and Ab hinge length, but not complement regulators, define the context dependency of Ab-mediated CDC activity. Our results point toward a variation in the capacity of IgG subclasses to activate complement due to single amino acid changes and hinge length differences of allotypes to activate complement, which might give new insights on susceptibility to infectious, alloimmune, or autoimmune diseases and aid the design of Ab-based therapeutics.


Assuntos
Ativação do Complemento , Imunoglobulina G , Humanos , Glicosilação
13.
Sci Rep ; 13(1): 12618, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537263

RESUMO

Due to multi-drug resistance, physicians increasingly use the last-resort antibiotic colistin to treat infections with the Gram-negative bacterium Klebsiella pneumoniae. Unfortunately, K. pneumoniae can also develop colistin resistance. Interestingly, colistin resistance has dual effects on bacterial clearance by the immune system. While it increases resistance to antimicrobial peptides, colistin resistance has been reported to sensitize certain bacteria for killing by human serum. Here we investigate the mechanisms underlying this increased serum sensitivity, focusing on human complement which kills Gram-negatives via membrane attack complex (MAC) pores. Using in vitro evolved colistin resistant strains and a fluorescent MAC-mediated permeabilization assay, we showed that two of the three tested colistin resistant strains, Kp209_CSTR and Kp257_CSTR, were sensitized to MAC. Transcriptomic and mechanistic analyses focusing on Kp209_CSTR revealed that a mutation in the phoQ gene locked PhoQ in an active state, making Kp209_CSTR colistin resistant and MAC sensitive. Detailed immunological assays showed that complement activation on Kp209_CSTR in human serum required specific IgM antibodies that bound Kp209_CSTR but did not recognize the wild-type strain. Together, our results show that developing colistin resistance affected recognition of Kp209_CSTR and its killing by the immune system.


Assuntos
Colistina , Infecções por Klebsiella , Humanos , Colistina/farmacologia , Colistina/uso terapêutico , Klebsiella pneumoniae/genética , Proteínas de Bactérias/farmacologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Mutação , Imunoglobulina M/genética , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Testes de Sensibilidade Microbiana
14.
J Proteome Res ; 22(9): 3022-3028, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499263

RESUMO

Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell disorder characterized by the presence of a predominant monoclonal antibody (i.e., M-protein) in serum, without clinical symptoms. Here we present a case study in which we detect MGUS by liquid-chromatography coupled with mass spectrometry (LC-MS) profiling of IgG1 in human serum. We detected a Fab-glycosylated M-protein and determined the full heavy and light chain sequences by bottom-up proteomics techniques using multiple proteases, further validated by top-down LC-MS. Moreover, the composition and location of the Fab-glycan could be determined in CDR1 of the heavy chain. The outlined approach adds to an expanding mass spectrometry-based toolkit to characterize monoclonal gammopathies such as MGUS and multiple myeloma, with fine molecular detail. The ability to detect monoclonal gammopathies and determine M-protein sequences straight from blood samples by mass spectrometry provides new opportunities to understand the molecular mechanisms of such diseases.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Paraproteinemias , Humanos , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Paraproteinemias/diagnóstico , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Espectrometria de Massas , Imunoglobulina G
15.
J Biol Chem ; 299(8): 104956, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356719

RESUMO

The human complement system plays a crucial role in immune defense. However, its erroneous activation contributes to many serious inflammatory diseases. Since most unwanted complement effector functions result from C5 cleavage into C5a and C5b, development of C5 inhibitors, such as clinically approved monoclonal antibody eculizumab, are of great interest. Here, we developed and characterized two anti-C5 nanobodies, UNbC5-1 and UNbC5-2. Using surface plasmon resonance, we determined a binding affinity of 119.9 pM for UNbC5-1 and 7.7 pM for UNbC5-2. Competition experiments determined that the two nanobodies recognize distinct epitopes on C5. Both nanobodies efficiently interfered with C5 cleavage in a human serum environment, as they prevented red blood cell lysis via membrane attack complexes (C5b-9) and the formation of chemoattractant C5a. The cryo-EM structure of UNbC5-1 and UNbC5-2 in complex with C5 (3.6 Å resolution) revealed that the binding interfaces of UNbC5-1 and UNbC5-2 overlap with known complement inhibitors eculizumab and RaCI3, respectively. UNbC5-1 binds to the MG7 domain of C5, facilitated by a hydrophobic core and polar interactions, and UNbC5-2 interacts with the C5d domain mostly by salt bridges and hydrogen bonds. Interestingly, UNbC5-1 potently binds and inhibits C5 R885H, a genetic variant of C5 that is not recognized by eculizumab. Altogether, we identified and characterized two different, high affinity nanobodies against human C5. Both nanobodies could serve as diagnostic and/or research tools to detect C5 or inhibit C5 cleavage. Furthermore, the residues targeted by UNbC5-1 hold important information for therapeutic inhibition of different polymorphic variants of C5.


Assuntos
Anticorpos Monoclonais , Complemento C5 , Anticorpos de Domínio Único , Humanos , Ativação do Complemento , Complemento C5/antagonistas & inibidores , Complemento C5/genética , Complexo de Ataque à Membrana do Sistema Complemento , Proteínas do Sistema Complemento/metabolismo
16.
Adv Sci (Weinh) ; 10(23): e2301340, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290045

RESUMO

The treatment of implant-associated bacterial infections and biofilms is an urgent medical need and a grand challenge because biofilms protect bacteria from the immune system and harbor antibiotic-tolerant persister cells. This need is addressed herein through an engineering of antibody-drug conjugates (ADCs) that contain an anti-neoplastic drug mitomycin C, which is also a potent antimicrobial against biofilms. The ADCs designed herein release the conjugated drug without cell entry, via a novel mechanism of drug release which likely involves an interaction of ADC with the thiols on the bacterial cell surface. ADCs targeted toward bacteria are superior by the afforded antimicrobial effects compared to the non-specific counterpart, in suspension and within biofilms, in vitro, and in an implant-associated murine osteomyelitis model in vivo. The results are important in developing ADC for a new area of application with a significant translational potential, and in addressing an urgent medical need of designing a treatment of bacterial biofilms.


Assuntos
Anti-Infecciosos , Imunoconjugados , Camundongos , Animais , Liberação Controlada de Fármacos , Bactérias , Biofilmes
17.
Elife ; 122023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947116

RESUMO

Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and an important cause of childhood mortality. Despite the introduction of successful vaccines, the global spread of both non-vaccine serotypes and antibiotic-resistant strains reinforces the development of alternative therapies against this pathogen. One possible route is the development of monoclonal antibodies (mAbs) that induce killing of bacteria via the immune system. Here, we investigate whether mAbs can be used to induce killing of pneumococcal serotypes for which the current vaccines show unsuccessful protection. Our study demonstrates that when human mAbs against pneumococcal capsule polysaccharides (CPS) have a poor capacity to induce complement activation, a critical process for immune protection against pneumococci, their activity can be strongly improved by hexamerization-enhancing mutations. Our data indicate that anti-capsular antibodies may have a low capacity to form higher-order oligomers (IgG hexamers) that are needed to recruit complement component C1. Indeed, specific point mutations in the IgG-Fc domain that strengthen hexamerization strongly enhance C1 recruitment and downstream complement activation on encapsulated pneumococci. Specifically, hexamerization-enhancing mutations E430G or E345K in CPS6-IgG strongly potentiate complement activation on S. pneumoniae strains that express capsular serotype 6 (CPS6), and the highly invasive serotype 19A strain. Furthermore, these mutations improve complement activation via mAbs recognizing CPS3 and CPS8 strains. Importantly, hexamer-enhancing mutations enable mAbs to induce strong opsonophagocytic killing by human neutrophils. Finally, passive immunization with CPS6-IgG1-E345K protected mice from developing severe pneumonia. Altogether, this work provides an important proof of concept for future optimization of antibody therapies against encapsulated bacteria.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Animais , Camundongos , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/microbiologia , Neutrófilos , Sorogrupo , Imunoglobulina G
18.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901805

RESUMO

Implant infections caused by Staphylococcus aureus are difficult to treat due to biofilm formation, which complicates surgical and antibiotic treatment. We introduce an alternative approach using monoclonal antibodies (mAbs) targeting S. aureus and provide evidence of the specificity and biodistribution of S.-aureus-targeting antibodies in a mouse implant infection model. The monoclonal antibody 4497-IgG1 targeting wall teichoic acid in S. aureus was labeled with indium-111 using CHX-A"-DTPA as a chelator. Single Photon Emission Computed Tomography/computed tomographyscans were performed at 24, 72 and 120 h after administration of the 111In-4497 mAb in Balb/cAnNCrl mice with a subcutaneous implant that was pre-colonized with S. aureus biofilm. The biodistribution of this labelled antibody over various organs was visualized and quantified using SPECT/CT imaging, and was compared to the uptake at the target tissue with the implanted infection. Uptake of the 111In-4497 mAbs at the infected implant gradually increased from 8.34 %ID/cm3 at 24 h to 9.22 %ID/cm3 at 120 h. Uptake at the heart/blood pool decreased over time from 11.60 to 7.58 %ID/cm3, whereas the uptake in the other organs decreased from 7.26 to less than 4.66 %ID/cm3 at 120 h. The effective half-life of 111In-4497 mAbs was determined to be 59 h. In conclusion, 111In-4497 mAbs were found to specifically detect S. aureus and its biofilm with excellent and prolonged accumulation at the site of the colonized implant. Therefore, it has the potential to serve as a drug delivery system for the diagnostic and bactericidal treatment of biofilm.


Assuntos
Anticorpos Monoclonais , Staphylococcus aureus , Animais , Camundongos , Staphylococcus aureus/metabolismo , Distribuição Tecidual , Anticorpos Monoclonais/uso terapêutico , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Quelantes
19.
Sci Rep ; 13(1): 856, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646746

RESUMO

Bacteriophages (phages) are viruses that specifically attack bacteria. Their use as therapeutics, which constitutes a promising alternative to antibiotics, heavily relies on selecting effective lytic phages against the pathogen of interest. Current selection techniques are laborious and do not allow for direct visualization of phage infection dynamics. Here, we present a method that circumvents these limitations. It can be scaled for high-throughput and permits monitoring of the phage infection in real time via a fluorescence signal readout. This is achieved through the use of a membrane-impermeant nucleic acid dye that stains the DNA of damaged or lysed bacteria and new phage progeny. We have tested the method on Pseudomonas aeruginosa and Klebsiella pneumoniae and show that an increase in fluorescence reflects phage-mediated killing. This is confirmed by other techniques including spot tests, colony plating, flow cytometry and metabolic activity measurements. Furthermore, we illustrate how our method may be used to compare the activity of different phages and to screen the susceptibility of clinical isolates to phage. Altogether, we present a fast, reliable way of selecting phages against Gram-negative bacteria, which may be valuable in optimizing the process of selecting phages for therapeutic use.


Assuntos
Bacteriófagos , Corantes Fluorescentes , Bacteriófagos/genética , Bactérias , Antibacterianos , DNA
20.
PLoS Pathog ; 19(1): e1011023, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696456

RESUMO

Pseudomonas aeruginosa, an opportunistic Gram-negative pathogen, is a leading cause of bacteremia with a high mortality rate. We recently reported that P. aeruginosa forms a persister-like sub-population of evaders in human plasma. Here, using a gain-of-function transposon sequencing (Tn-seq) screen in plasma, we identified and validated previously unknown factors affecting bacterial persistence in plasma. Among them, we identified a small periplasmic protein, named SrgA, whose expression leads to up to a 100-fold increase in resistance to killing. Additionally, mutants in pur and bio genes displayed higher tolerance and persistence, respectively. Analysis of several steps of the complement cascade and exposure to an outer-membrane-impermeable drug, nisin, suggested that the mutants impede membrane attack complex (MAC) activity per se. Electron microscopy combined with energy-dispersive X-ray spectroscopy (EDX) revealed the formation of polyphosphate (polyP) granules upon incubation in plasma of different size in purD and wild-type strains, implying the bacterial response to a stress signal. Indeed, inactivation of ppk genes encoding polyP-generating enzymes lead to significant elimination of persisting bacteria from plasma. Through this study, we shed light on a complex P. aeruginosa response to the plasma conditions and discovered the multifactorial origin of bacterial resilience to MAC-induced killing.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Pseudomonas aeruginosa/genética , Proteínas do Sistema Complemento , Complexo de Ataque à Membrana do Sistema Complemento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA