Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 439, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698307

RESUMO

BACKGROUND: Chickpea is prone to many abiotic stresses such as heat, drought, salinity, etc. which cause severe loss in yield. Tolerance towards these stresses is quantitative in nature and many studies have been done to map the loci influencing these traits in different populations using different markers. This study is an attempt to meta-analyse those reported loci projected over a high-density consensus map to provide a more accurate information on the regions influencing heat, drought, cold and salinity tolerance in chickpea. RESULTS: A meta-analysis of QTL reported to be responsible for tolerance to drought, heat, cold and salinity stress tolerance in chickpeas was done. A total of 1512 QTL responsible for the concerned abiotic stress tolerance were collected from literature, of which 1189 were projected on a chickpea consensus genetic map. The QTL meta-analysis predicted 59 MQTL spread over all 8 chromosomes, responsible for these 4 kinds of abiotic stress tolerance in chickpea. The physical locations of 23 MQTL were validated by various marker-trait associations and genome-wide association studies. Out of these reported MQTL, CaMQAST1.1, CaMQAST4.1, CaMQAST4.4, CaMQAST7.8, and CaMQAST8.2 were suggested to be useful for different breeding approaches as they were responsible for high per cent variance explained (PVE), had small intervals and encompassed a large number of originally reported QTL. Many putative candidate genes that might be responsible for directly or indirectly conferring abiotic stress tolerance were identified in the region covered by 4 major MQTL- CaMQAST1.1, CaMQAST4.4, CaMQAST7.7, and CaMQAST6.4, such as heat shock proteins, auxin and gibberellin response factors, etc. CONCLUSION: The results of this study should be useful for the breeders and researchers to develop new chickpea varieties which are tolerant to drought, heat, cold, and salinity stresses.


Assuntos
Cicer , Locos de Características Quantitativas , Estresse Fisiológico , Cicer/genética , Estresse Fisiológico/genética , Mapeamento Cromossômico , Secas , Estudo de Associação Genômica Ampla
2.
Plant Biotechnol J ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206288

RESUMO

Professor Rajeev K. Varshney's transformative impact on crop genomics, genetics, and agriculture is the result of his passion, dedication, and unyielding commitment to harnessing the potential of genomics to address the most pressing challenges faced by the global agricultural community. Starting from a small town in India and reaching the global stage, Professor Varshney's academic and professional trajectory has inspired many scientists active in research today. His ground-breaking work, especially his effort to list orphan tropical crops to genomic resource-rich entities, has been transformative. Beyond his scientific achievements, Professor Varshney is recognized by his colleagues as an exemplary mentor, fostering the growth of future researchers, building institutional capacity, and strengthening scientific capability. His focus on translational genomics and strengthening seed system in developing countries for the improvement of agriculture has made a tangible impact on farmers' lives. His skills have been best utilized in roles at leading research centres where he has applied his expertise to deliver a new vision for crop improvement. These efforts have now been recognized by the Royal Society with the award of the Fellowship (FRS). As we mark this significant milestone in his career, we not only celebrate Professor Varshney's accomplishments but also his wider contributions that continue to transform the agricultural landscape.

3.
Plant Genome ; 17(1): e20333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37122200

RESUMO

Terminal drought is one of the major constraints to crop production in chickpea (Cicer arietinum L.). In order to map drought tolerance related traits at high resolution, we sequenced multi-parent advanced generation intercross (MAGIC) population using whole genome resequencing approach and phenotyped it under drought stress environments for two consecutive years (2013-14 and 2014-15). A total of 52.02 billion clean reads containing 4.67 TB clean data were generated on the 1136 MAGIC lines and eight parental lines. Alignment of clean data on to the reference genome enabled identification of a total, 932,172 of SNPs, 35,973 insertions, and 35,726 deletions among the parental lines. A high-density genetic map was constructed using 57,180 SNPs spanning a map distance of 1606.69 cM. Using compressed mixed linear model, genome-wide association study (GWAS) enabled us to identify 737 markers significantly associated with days to 50% flowering, days to maturity, plant height, 100 seed weight, biomass, and harvest index. In addition to the GWAS approach, an identity-by-descent (IBD)-based mixed model approach was used to map quantitative trait loci (QTLs). The IBD-based mixed model approach detected major QTLs that were comparable to those from the GWAS analysis as well as some exclusive QTLs with smaller effects. The candidate genes like FRIGIDA and CaTIFY4b can be used for enhancing drought tolerance in chickpea. The genomic resources, genetic map, marker-trait associations, and QTLs identified in the study are valuable resources for the chickpea community for developing climate resilient chickpeas.


Assuntos
Cicer , Mapeamento Cromossômico , Cicer/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Resistência à Seca
4.
Sci Rep ; 13(1): 15450, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723187

RESUMO

Increasing temperature affects all food crops, thereby reducing their yield potential. Chickpea is a cool-season food legume vital for its nutritive value, but it is sensitive to high temperatures (> 32/20 °C maximum/minimum) during its reproductive and seed-filling stages. This study evaluated the effects of heat stress on yield and qualitative traits of chickpea seeds in a controlled environment. Chickpea genotypes differing in heat sensitivity [two heat-tolerant (HT) and two heat-sensitive (HS)] were raised in pots, initially in an outdoor environment (average 23.5/9.9 °C maximum/minimum), until the beginning of pod set (107-110 days after sowing). At this stage, the plants were moved to a controlled environment in the growth chamber to impose heat stress (32/20 °C) at the seed-filling stage, while maintaining a set of control plants at 25/15 °C. The leaves of heat-stressed plants of the HT and HS genotypes showed considerable membrane damage, altered stomatal conductance, and reduced leaf water content, chlorophyll content, chlorophyll fluorescence, and photosynthetic ability (RuBisCo, sucrose phosphate synthase, and sucrose activities) relative to their corresponding controls. Seed filling duration and seed rate drastically decreased in heat-stressed plants of the HT and HS genotypes, severely reducing seed weight plant-1 and single seed weight, especially in the HS genotypes. Yield-related traits, such as pod number, seed number, and harvest index, noticeably decreased in heat-stressed plants and more so in the HS genotypes. Seed components, such as starch, proteins, fats, minerals (Ca, P, and Fe), and storage proteins (albumin, globulins, glutelin, and prolamins), drastically declined, resulting in poor-quality seeds, particularly in the HS genotypes. These findings revealed that heat stress significantly reduced leaf sucrose production, affecting the accumulation of various seed constituents, and leading to poor nutritional quality. The HT genotypes were less affected than the HS genotypes because of the greater stability of their leaf water status and photosynthetic ability, contributing to better yield and seed quality traits in a heat-stressed environment.


Assuntos
Cicer , Fabaceae , Cicer/genética , Sementes/genética , Genótipo , Clorofila
5.
J Adv Res ; 42: 315-329, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36513421

RESUMO

INTRODUCTION: Legume crops are an important source of protein and oil for human health and in fixing atmospheric N2 for soil enrichment. With an objective to accelerate much-needed genetic analyses and breeding applications, draft genome assemblies were generated in several legume crops; many of them are not high quality because they are mainly based on short reads. However, the superior quality of genome assembly is crucial for a detailed understanding of genomic architecture, genome evolution, and crop improvement. OBJECTIVES: Present study was undertaken with an objective of developing improved chromosome-length genome assemblies in six different legumes followed by their systematic investigation to unravel different aspects of genome organization and legume evolution. METHODS: We employed in situ Hi-C data to improve the existing draft genomes and performed different evolutionary and comparative analyses using improved genome assemblies. RESULTS: We have developed chromosome-length genome assemblies in chickpea, pigeonpea, soybean, subterranean clover, and two wild progenitor species of cultivated groundnut (A. duranensis and A. ipaensis). A comprehensive comparative analysis of these genome assemblies offered improved insights into various evolutionary events that shaped the present-day legume species. We highlighted the expansion of gene families contributing to unique traits such as nodulation in legumes, gravitropism in groundnut, and oil biosynthesis in oilseed legume crops such as groundnut and soybean. As examples, we have demonstrated the utility of improved genome assemblies for enhancing the resolution of "QTL-hotspot" identification for drought tolerance in chickpea and marker-trait associations for agronomic traits in pigeonpea through genome-wide association study. Genomic resources developed in this study are publicly available through an online repository, 'Legumepedia'. CONCLUSION: This study reports chromosome-length genome assemblies of six legume species and demonstrates the utility of these assemblies in crop improvement. The genomic resources developed here will have significant role in accelerating genetic improvement applications of legume crops.


Assuntos
Cicer , Fabaceae , Humanos , Fabaceae/genética , Mapeamento Cromossômico , Genoma de Planta , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Cicer/genética , Produtos Agrícolas/genética , Glycine max/genética , Cromossomos
6.
Front Genet ; 13: 958780, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313472

RESUMO

The development of genomic selection (GS) methods has allowed plant breeding programs to select favorable lines using genomic data before performing field trials. Improvements in genotyping technology have yielded high-dimensional genomic marker data which can be difficult to incorporate into statistical models. In this paper, we investigated the utility of applying dimensionality reduction (DR) methods as a pre-processing step for GS methods. We compared five DR methods and studied the trend in the prediction accuracies of each method as a function of the number of features retained. The effect of DR methods was studied using three models that involved the main effects of line, environment, marker, and the genotype by environment interactions. The methods were applied on a real data set containing 315 lines phenotyped in nine environments with 26,817 markers each. Regardless of the DR method and prediction model used, only a fraction of features was sufficient to achieve maximum correlation. Our results underline the usefulness of DR methods as a key pre-processing step in GS models to improve computational efficiency in the face of ever-increasing size of genomic data.

7.
Front Genet ; 13: 953898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061197

RESUMO

Chickpea yield is severely affected by drought stress, which is a complex quantitative trait regulated by multiple small-effect genes. Identifying genomic regions associated with drought tolerance component traits may increase our understanding of drought tolerance mechanisms and assist in the development of drought-tolerant varieties. Here, a total of 187 F8 recombinant inbred lines (RILs) developed from an interspecific cross between drought-tolerant genotype GPF 2 (Cicer arietinum) and drought-sensitive accession ILWC 292 (C. reticulatum) were evaluated to identify quantitative trait loci (QTLs) associated with drought tolerance component traits. A total of 21 traits, including 12 morpho-physiological traits and nine root-related traits, were studied under rainfed and irrigated conditions. Composite interval mapping identified 31 QTLs at Ludhiana and 23 QTLs at Faridkot locations for morphological and physiological traits, and seven QTLs were identified for root-related traits. QTL analysis identified eight consensus QTLs for six traits and five QTL clusters containing QTLs for multiple traits on linkage groups CaLG04 and CaLG06. The identified major QTLs and genomic regions associated with drought tolerance component traits can be introgressed into elite cultivars using genomics-assisted breeding to enhance drought tolerance in chickpea.

8.
Front Plant Sci ; 13: 843911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082300

RESUMO

Micronutrient malnutrition is a serious concern in many parts of the world; therefore, enhancing crop nutrient content is an important challenge. Chickpea (Cicer arietinum L.), a major food legume crop worldwide, is a vital source of protein and minerals in the vegetarian diet. This study evaluated a diverse set of 258 chickpea germplasm accessions for 12 key nutritional traits. A significant variation was observed for several nutritional traits, including crude protein (16.56-24.64/100 g), ß-Carotene (0.003-0.104 mg/100 g), calcium (60.69-176.55 mg/100 g), and folate (0.413-6.537 mg/kg). These data, combined with the available whole-genome sequencing data for 318,644 SNPs, were used in genome-wide association studies comprising single-locus and multi-locus models. We also explored the effect of varying the minor allele frequency (MAF) levels and heterozygosity. We identified 62 significant marker-trait associations (MTAs) explaining up to 28.63% of the phenotypic variance (PV), of which nine were localized within genes regulating G protein-coupled receptor signaling pathway, proteasome assembly, intracellular signal transduction, and oxidation-reduction process, among others. The significant effect MTAs were located primarily on Ca1, Ca3, Ca4, and Ca6. Importantly, varying the level of heterozygosity was found to significantly affect the detection of associations contributing to traits of interest. We further identified seven promising accessions (ICC10399, ICC1392, ICC1710, ICC2263, ICC1431, ICC4182, and ICC16915) with superior agronomic performance and high nutritional content as potential donors for developing nutrient-rich, high-yielding chickpea varieties. Validation of the significant MTAs with higher PV could identify factors controlling the nutrient acquisition and facilitate the design of biofortified chickpeas for the future.

9.
Sci Rep ; 12(1): 16315, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175531

RESUMO

Soil salinity affects various crop cultivation but legumes are the most sensitive to salinity. Osmotic stress is the first stage of salinity stress caused by excess salts in the soil on plants which adversely affects the growth instantly. The Trehalose-6-phosphate synthase (TPS) genes play a key role in the regulation of abiotic stresses resistance from the high expression of different isoform. Selected genotypes were evaluated to estimate for salt tolerance as well as genetic variability at morphological and molecular level. Allelic variations were identified in some of the selected genotypes for the TPS gene. A comprehensive analysis of the TPS gene from selected genotypes was conducted. Presence of significant genetic variability among the genotypes was found for salinity tolerance. This is the first report of allelic variation of TPS gene from chickpea and results indicates that the SNPs present in these conserved regions may contribute largely to functional distinction. The nucleotide sequence analysis suggests that the TPS gene sequences were found to be conserved among the genotypes. Some selected genotypes were evaluated to estimate for salt tolerance as well as for comparative analysis of physiological, molecular and allelic variability for salt responsive gene Trehalose-6-Phosphate Synthase through sequence similarity. Allelic variations were identified in some selected genotypes for the TPS gene. It is found that Pusa362, Pusa1103, and IG5856 are the most salt-tolerant lines and the results indicates that the identified genotypes can be used as a reliable donor for the chickpea improvement programs for salinity tolerance.


Assuntos
Cicer , Cicer/genética , Glucosiltransferases , Tolerância ao Sal/genética , Sais , Solo
10.
Front Genet ; 13: 924287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991541

RESUMO

Pusa 391, a mega desi chickpea variety with medium maturity duration is extensively cultivated in the Central Zone of India. Of late, this variety has become susceptible to Fusarium wilt (FW), which has drastic impact on its yield. Presence of variability in the wilt causing pathogen, Fusarium oxysporum f.sp. ciceri (foc) across geographical locations necessitates the role of pyramiding for FW resistance for different races (foc 1,2,3,4 and 5). Subsequently, the introgression lines developed in Pusa 391 genetic background were subjected to foreground selection using three SSR markers (GA16, TA 27 and TA 96) while 48 SSR markers uniformly distributed on all chromosomes, were used for background selection to observe the recovery of recurrent parent genome (RPG). BC1F1 lines with 75-85% RPG recovery were used to generate BC2F1. The plants that showed more than 90% RPG recovery in BC2F1 were used for generating BC3F1. The plants that showed more than 96% RPG recovery were selected and selfed to generate BC3F3. Multi-location evaluation of advanced introgression lines (BC2F3) in six locations for grain yield (kg/ha), days to fifty percent flowering, days to maturity, 100 seed weight and disease incidence was done. In case of disease incidence, the genotype IL1 (BGM 20211) was highly resistant to FW in Junagarh, Indore, New Delhi, Badnapur and moderately resistant at Sehore and Nandyal. GGE biplot analysis revealed that IL1(BGM20211) was the most stable genotype at Junagadh, Sehore and Nandyal. GGE biplot analysis revealed that IL1(BGM 20211) and IL4(BGM 20212) were the top performers in yield and highly stable across six environments and were nominated for Advanced Varietal Trials (AVT) of AICRP (All India Coordinated Research Project on Chickpea) in 2018-19. BGM20211 and BGM 20212 recorded 29 and 28.5% average yield gain over the recurrent parent Pusa 391, in the AVT-1 and AVT-2 over five environments. Thus, BGM20211 was identified for release and notified as Pusa Manav/Pusa Chickpea 20211 for Madhya Pradesh, Gujarat and Maharashtra, Southern Rajasthan, Bundhelkhand region of Uttar Pradesh states by the Central Sub-Committees on Crop Standards, Notification and Release of Varieties of Agricultural Crops, Ministry of Agriculture and Farmers Welfare, Government of India, for commercial cultivation in India (Gazette notification number S.O.500 (E) dt. 29-1-2021).Such pyramided lines give resilience to multiple races of fusarium wilt with added yield advantage.

11.
J Exp Bot ; 73(22): 7255-7272, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36006832

RESUMO

'QTL-hotspot' is a genomic region on linkage group 04 (CaLG04) in chickpea (Cicer arietinum) that harbours major-effect quantitative trait loci (QTLs) for multiple drought-adaptive traits, and it therefore represents a promising target for improving drought adaptation. To investigate the mechanisms underpinning the positive effects of 'QTL-hotspot' on seed yield under drought, we introgressed this region from the ICC 4958 genotype into five elite chickpea cultivars. The resulting introgression lines (ILs) and their parents were evaluated in multi-location field trials and semi-controlled conditions. The results showed that the 'QTL-hotspot' region improved seed yield under rainfed conditions by increasing seed weight, reducing the time to flowering, regulating traits related to canopy growth and early vigour, and enhancing transpiration efficiency. Whole-genome sequencing data analysis of the ILs and parents revealed four genes underlying the 'QTL-hotspot' region associated with drought adaptation. We validated diagnostic KASP markers closely linked to these genes using the ILs and their parents for future deployment in chickpea breeding programs. The CaTIFY4b-H2 haplotype of a potential candidate gene CaTIFY4b was identified as the superior haplotype for 100-seed weight. The candidate genes and superior haplotypes identified in this study have the potential to serve as direct targets for genetic manipulation and selection for chickpea improvement.


Assuntos
Cicer , Cicer/genética , Genômica
12.
Plant Cell Physiol ; 63(11): 1554-1572, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-35713290

RESUMO

Crop domestication is a co-evolutionary process that has rendered plants and animals significantly dependent on human interventions for survival and propagation. Grain legumes have played an important role in the development of Neolithic agriculture some 12,000 years ago. Despite being early companions of cereals in the origin and evolution of agriculture, the understanding of grain legume domestication has lagged behind that of cereals. Adapting plants for human use has resulted in distinct morpho-physiological changes between the wild ancestors and domesticates, and this distinction has been the focus of several studies aimed at understanding the domestication process and the genetic diversity bottlenecks created. Growing evidence from research on archeological remains, combined with genetic analysis and the geographical distribution of wild forms, has improved the resolution of the process of domestication, diversification and crop improvement. In this review, we summarize the significance of legume wild relatives as reservoirs of novel genetic variation for crop breeding programs. We describe key legume features, which evolved in response to anthropogenic activities. Here, we highlight how whole genome sequencing and incorporation of omics-level data have expanded our capacity to monitor the genetic changes accompanying these processes. Finally, we present our perspective on alternative routes centered on de novo domestication and re-domestication to impart significant agronomic advances of novel crops over existing commodities. A finely resolved domestication history of grain legumes will uncover future breeding targets to develop modern cultivars enriched with alleles that improve yield, quality and stress tolerance.


Assuntos
Domesticação , Fabaceae , Humanos , Grão Comestível/genética , Fabaceae/genética , Melhoramento Vegetal , Produtos Agrícolas/genética
13.
Plant Biotechnol J ; 20(9): 1701-1715, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534989

RESUMO

Chickpea production is vulnerable to drought stress. Identifying the genetic components underlying drought adaptation is crucial for enhancing chickpea productivity. Here, we present the fine mapping and characterization of 'QTL-hotspot', a genomic region controlling chickpea growth with positive consequences on crop production under drought. We report that a non-synonymous substitution in the transcription factor CaTIFY4b regulates seed weight and organ size in chickpea. Ectopic expression of CaTIFY4b in Medicago truncatula enhances root growth under water deficit. Our results suggest that allelic variation in 'QTL-hotspot' improves pre-anthesis water use, transpiration efficiency, root architecture and canopy development, enabling high-yield performance under terminal drought conditions. Gene expression analysis indicated that CaTIFY4b may regulate organ size under water deficit by modulating the expression of GRF-INTERACTING FACTOR1 (GIF1), a transcriptional co-activator of Growth-Regulating Factors. Taken together, our study offers new insights into the role of CaTIFY4b and on diverse physiological and molecular mechanisms underpinning chickpea growth and production under specific drought scenarios.


Assuntos
Cicer , Secas , Adaptação Fisiológica/genética , Cicer/genética , Variação Genética/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Água/metabolismo
15.
Theor Appl Genet ; 135(1): 107-124, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34643761

RESUMO

KEY MESSAGE: QTL controlling vigour and related traits were identified in a chickpea RIL population and validated in diverse sets of germplasm. Robust KASP markers were developed for marker-assisted selection. To understand the genetic constitution of vigour in chickpea (Cicer arietinum L.), genomic data from a bi-parental population and multiple diversity panels were used to identify QTL, sequence-level haplotypes and genetic markers associated with vigour-related traits in Australian environments. Using 182 Recombinant Inbred Lines (RILs) derived from a cross between two desi varieties, Rupali and Genesis836, vigour QTL independent of flowering time were identified on chromosomes (Ca) 1, 3 and 4 with genotypic variance explained (GVE) ranging from 7.1 to 28.8%. Haplotype analysis, association analysis and graphical genotyping of whole-genome re-sequencing data of two diversity panels consisting of Australian and Indian genotypes and an ICRISAT Chickpea Reference Set revealed a deletion in the FTa1-FTa2-FTc gene cluster of Ca3 significantly associated with vigour and flowering time. Across the RIL population and diversity panels, the impact of the deletion was consistent for vigour but not flowering time. Vigour-related QTL on Ca4 co-located with a QTL for seed size in Rupali/Genesis836 (GVE = 61.3%). Using SNPs from this region, we developed and validated gene-based KASP markers across different panels. Two markers were developed for a gene on Ca1, myo -inositol monophosphatase (CaIMP), previously proposed to control seed size, seed germination and seedling growth in chickpea. While associated with vigour in the diversity panels, neither the markers nor broader haplotype linked to CaIMP was polymorphic in Rupali/Genesis836. Importantly, vigour appears to be controlled by different sets of QTL across time and with components which are independent from phenology.


Assuntos
Cicer/genética , Genoma de Planta , Cicer/crescimento & desenvolvimento , Estudos de Associação Genética , Marcadores Genéticos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/anatomia & histologia , Sementes/genética
16.
Biology (Basel) ; 10(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34943170

RESUMO

Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.

17.
Physiol Mol Biol Plants ; 27(11): 2605-2619, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34916736

RESUMO

LncRNAs (long noncoding RNAs) are 200 bp length crucial RNA molecules, lacking coding potential and having important roles in regulating gene expression, particularly in response to abiotic stresses. In this study, we identified salt stress-induced lncRNAs in chickpea roots and predicted their intricate regulatory roles. A total of 3452 novel lncRNAs were identified to be distributed across all 08 chickpea chromosomes. On comparing salt-tolerant (ICCV 10, JG 11) and salt-sensitive cultivars (DCP 92-3, Pusa 256), 4446 differentially expressed lncRNAs were detected under various salt  treatments. We predicted 3373 lncRNAs to be regulating their target genes in cis regulating manner and 80 unique lncRNAs were observed as interacting with 136 different miRNAs, as eTMs (endogenous target mimic) targets of miRNAs and implicated them in the regulatory network of salt stress response. Functional analysis of these lncRNA revealed their association in targeting salt stress response-related genes like potassium transporter, transporter family genes, serine/threonine-protein kinase, aquaporins like TIP1-2, PIP2-5 and transcription factors like, AP2, NAC, bZIP, ERF, MYB and WRKY. Furthermore, about 614 lncRNA-SSRs (simple sequence repeats) were identified as a new generation of molecular markers with higher efficiency and specificity in chickpea. Overall, these findings will pave the understanding of comprehensive functional role of potential lncRNAs, which can help in providing insight into the molecular mechanism of salt tolerance in chickpea. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01093-0.

18.
Plants (Basel) ; 10(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34961053

RESUMO

The Translational Chickpea Genomics Consortium (TCGC) was set up to increase the production and productivity of chickpea (Cicer arietinum L.). It represents research institutes from six major chickpea growing states (Madhya Pradesh, Maharashtra, Andhra Pradesh, Telangana, Karnataka and Uttar Pradesh) of India. The TCGC team has been engaged in deploying modern genomics approaches in breeding and popularizing improved varieties in farmers' fields across the states. Using marker-assisted backcrossing, introgression lines with enhanced drought tolerance and fusarium wilt resistance have been developed in the genetic background of 10 elite varieties of chickpea. Multi-location evaluation of 100 improved lines (70 desi and 30 kabuli) during 2016-2017 and 2018-2019 enabled the identification of top performing desi and kabuli lines. In total, 909 Farmer Participatory Varietal Selection trials were conducted in 158 villages in 16 districts of the five states, during 2017-2018, 2018-2019, and 2019-2020, involving 16 improved varieties. New molecular breeding lines developed in different genetic backgrounds are potential candidates for national trials under the ICAR-All India Coordinated Research Project on Chickpea. The comprehensive efforts of TCGC resulted in the development and adoption of high-yielding varieties that will increase chickpea productivity and the profitability of chickpea growing farmers.

19.
Nature ; 599(7886): 622-627, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759320

RESUMO

Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources1. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level2. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively.


Assuntos
Cicer/genética , Variação Genética , Genoma de Planta/genética , Análise de Sequência de DNA , Produtos Agrícolas/genética , Haplótipos/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética
20.
Trends Genet ; 37(12): 1124-1136, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34531040

RESUMO

Crop production systems need to expand their outputs sustainably to feed a burgeoning human population. Advances in genome sequencing technologies combined with efficient trait mapping procedures accelerate the availability of beneficial alleles for breeding and research. Enhanced interoperability between different omics and phenotyping platforms, leveraged by evolving machine learning tools, will help provide mechanistic explanations for complex plant traits. Targeted and rapid assembly of beneficial alleles using optimized breeding strategies and precise genome editing techniques could deliver ideal crops for the future. Realizing desired productivity gains in the field is imperative for securing an adequate future food supply for 10 billion people.


Assuntos
Genoma de Planta , Melhoramento Vegetal , Produtos Agrícolas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Humanos , Fenótipo , Melhoramento Vegetal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...