Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 252, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589797

RESUMO

BACKGROUND: This study explores the impact of various light spectra on the photosynthetic performance of strawberry plants subjected to salinity, alkalinity, and combined salinity/alkalinity stress. We employed supplemental lighting through Light-emitting Diodes (LEDs) with specific wavelengths: monochromatic blue (460 nm), monochromatic red (660 nm), dichromatic blue/red (1:3 ratio), and white/yellow (400-700 nm), all at an intensity of 200 µmol m-2 S-1. Additionally, a control group (ambient light) without LED treatment was included in the study. The tested experimental variants were: optimal growth conditions (control), alkalinity (40 mM NaHCO3), salinity (80 mM NaCl), and a combination of salinity/alkalinity. RESULTS: The results revealed a notable decrease in photosynthetic efficiency under both salinity and alkalinity stresses, especially when these stresses were combined, in comparison to the no-stress condition. However, the application of supplemental lighting, particularly with the red and blue/red spectra, mitigated the adverse effects of stress. The imposed stress conditions had a detrimental impact on both gas exchange parameters and photosynthetic efficiency of the plants. In contrast, treatments involving blue, red, and blue/red light exhibited a beneficial effect on photosynthetic efficiency compared to other lighting conditions. Further analysis of JIP-test parameters confirmed that these specific light treatments significantly ameliorated the stress impacts. CONCLUSIONS: In summary, the utilization of blue, red, and blue/red light spectra has the potential to enhance plant resilience in the face of salinity and alkalinity stresses. This discovery presents a promising strategy for cultivating plants in anticipation of future challenging environmental conditions.


Assuntos
Fragaria , Resiliência Psicológica , Iluminação/métodos , Salinidade , Luz
2.
BMC Plant Biol ; 24(1): 281, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614965

RESUMO

BACKGROUND: The presence of oxygen in the growth medium is absolutely essential for root development and the overall metabolic processes of plants. When plants do not have an adequate oxygen supply for respiration, they can experience a condition known as hypoxia. In order to investigate the impact of different nitrogen forms and varying oxygen levels in nutrient solutions on the growth, photosynthesis, and chlorophyll fluorescence parameters of bell pepper plants, a comprehensive study was conducted. The experiment was designed as a factorial experiment, considering two main factors: nitrogen forms (calcium nitrate and ammonium sulfate) with a fixed nitrogen concentration of 5 mM, and the oxygen levels of the nutrient solutions (ranging from 1.8 ± 0.2 to 5.3 ± 0.2 mg. L-1). RESULTS: The study examined the effects of nitrogen (NH4+ and NO3-) application on various parameters of vegetative growth. The results demonstrated that the use of ammonium (NH4+) led to a reduction in the most measured parameters, including the fresh and dry mass of both the root and shoot, at low O2 concentrations of 1.8 ± 0.2; 2.6 ± 0.2 and 3.8 ± 0.2 mg. L-1. However, an interesting observation was made regarding the impact of oxygen levels on root growth in plants grown with nitrate (NO3-). Specifically, the highest levels of oxygen significantly increased root growth in NO3--fed plants. Additionally, the application of NH4+ resulted in an increase in chlorophyll concentration in the leaves, particularly when combined with high oxygen levels in the nutrient solution. On the other hand, leaves of plants fed with NO3- exhibited higher photosynthetic rate (A), intrinsic water use efficiency (iWUE), and instantaneous carboxylation efficiency (A/Ci) compared to those fed with NH4+. Furthermore, it was found that NO3--fed plants displayed the highest instantaneous carboxylation efficiency at oxygen levels of 3.8 and 5.3 mg. L-1, while the lowest efficiency was observed at oxygen levels of 1.8 and 2.6 mg. L-1. In contrast, NH4+-grown plants exhibited a higher maximal quantum yield of PSII photochemistry (Fv/Fm), as well as increased variable fluorescence (Fv) and maximum fluorescence (Fm), compared to NO3--grown plants. Interestingly, the NO3--fed plants showed an increase in Fv/Fm, Fv, and Fm with the elevation of oxygen concentration in the nutrient solution up to 5.3 mg. L-1. CONCLUSION: This study showed that, the growth and photosynthesis parameters in bell pepper plants are sensitive to oxygen stress in floating hydroponic culture. Therefore, the oxygen level in the nutrient solution must not be lower than 3.8 and 5.3 mg. L-1 in NH4+ and NO3- -supplied culture media or nutrient solutions, respectively.


Assuntos
Nutrientes , Oxigênio , Hidroponia , Clorofila , Meios de Cultura , Nitrogênio
3.
BMC Plant Biol ; 24(1): 179, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454341

RESUMO

An experiment was conducted in a greenhouse to determine the effects of different supplemental light spectra on the growth, nutrient uptake, and fruit quality of four strawberry cultivars. The plants were grown under natural light and treated with blue (460 nm), red (660 nm), and red/blue (3:1) lights. Results showed that the "Parous" and "Camarosa" had higher fresh and dry mass of leaves, roots, and crowns compared to the "Sabrina" and "Albion". The use of artificial LED lights improved the vegetative growth of strawberry plants. All three supplemental light spectra significantly increased the early fruit yield of cultivars except for "Parous". The red/blue supplemental light spectrum also increased the fruit mass and length of the "Albion". Supplemental light increased the total chlorophyll in "Camarosa" and "Albion", as well as the total soluble solids in fruits. The "Albion" had the highest concentration of fruit anthocyanin, while the "Sabrina" had the lowest. The use of supplemental light spectra significantly increased the fruit anthocyanin concentration in all cultivars. Without supplemental light, the "Camarosa" had the lowest concentration of K and Mg, which increased to the highest concentration with the use of supplemental light spectra. All three spectra increased Fe concentration to the highest value in the "Sabrina", while only the red/blue light spectrum was effective on the "Camarosa". In conclusion, the use of supplemental light can increase the yield and fruit quality of strawberries by elevating nutrients, chlorophyll, and anthocyanin concentrations in plants.


Assuntos
Antocianinas , Fragaria , Frutas , Luz , Clorofila
4.
Food Sci Nutr ; 11(12): 8143-8162, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107131

RESUMO

To enhance crop yield and quality, plant cultivation in controlled-growing systems is an alternative to traditional open-field farming. The use of light-emitting diode (LED) as an adjustable light source represents a promising approach to improve plant growth, metabolism, and function. The objective of this study was to assess the impact of different light spectra (red, red/blue (3:1), blue, and white) with an emission peak of around 656, 656, 450, and 449 nm, respectively, under various replacement methods of nutrient solution (complete replacement (CR), EC-based replacement (ECBR), and replacing based on plant needs (RBPN)), on biomass, physiological traits, and macro- and micronutrient contents of two best-known lettuce varieties, Lollo Rossa (LR) and Lollo Bionda (LB), in the nutrient film technique (NFT) hydroponic system. The results indicated that mix of red and blue LED spectra under RBPN method is the most effective treatment to enhance fresh and dry weights of lettuce plants. In addition, red LED spectrum under RBPN, and red and blue light under ECBR nutrient solution significantly increased leaf stomatal conductance, net photosynthesis and transpiration rate, and intercellular CO2 concentration of LR variety. Phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mn) content in LR variety, and iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) content in both varieties increased upon exposure to blue and red LED light spectrum with RBPN method. Our results suggest that exposure to combination of red and blue light along with feeding plants using RBPN and ECBR methods can increase absorption of macro- and micronutrient elements and improve photosynthetic properties, and eventually increase lettuce yield with lower nitrate accumulation.

5.
Sci Rep ; 13(1): 20766, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007543

RESUMO

The aim of this study was to investigate the effect of different replacement methods of nutrient solution (complete replacement, electrical conductivity (EC)- based replacement, and replacing based on the plant needs) and different LED light spectra (monochromic white, red, blue, and a combination of red/blue) on the uptake of mineral nutrients, water and electricity consumption and biomass production of two varieties of lettuce (Lollo Rossa and Lollo Bionda; Lactuca sativa var. crispa) in the hydroponic systems. The results showed that replacement methods based on the plant needs and based on EC increased shoot fresh mass and yield index in the NFT system. Also, results showed that the combination of red/blue light increased shoot fresh mass and yield index in the NFT system and in the plant factory under treatment by replacement method based on plant needs. Increasing the concentrations of N, K, and Zn and loss of Fe in nutrient solution were observed in all three replacement methods of nutrient solution in the NFT system. Water consumption was decreased under plant nutrition based on plant needs and based on EC. In the plant factory, the application of LED light spectrum also decreased electricity consumption and cost against fluorescent lamps. In general, it is concluded that nutrient solution replacement based on the plant needs and based on EC and the use of different LED light spectra (especially the combination of red and blue light) can be used to reduce the consumption of water and nutrients in the hydroponic cultivation of lettuce.


Assuntos
Lactuca , Água , Água/farmacologia , Luz , Nutrientes , Eletricidade
6.
Sci Rep ; 13(1): 20334, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989836

RESUMO

The aim of this study was to investigate the impact of different cultivation systems (soil cultivation, hydroponic cultivation in greenhouse conditions, and hydroponic vertical cultivation in plant factory under different LED lights) and foliar spraying of nano calcium carbonate on pennyroyal plants. Nano calcium carbonate was applied to the plants at a 7-day interval, three times, one month after planting. Results showed that the greenhouse cultivation system with calcium carbonate foliar spraying produced the highest amount of shoot and root fresh mass in plants. Additionally, foliar spraying of calcium carbonate increased internode length and leaf area in various cultivation systems. Comparing the effects of different light spectrums revealed that red light increased internode length while decreasing leaf length, leaf area, and plant carotenoids. Blue light, on the other hand, increased the leaf area and root length of the plants. The hydroponic greenhouse cultivation system produced plants with the highest levels of chlorophyll, carotenoids, and phenolic compounds. White light-treated plants had less iron and calcium than those exposed to other light spectrums. In conclusion, pennyroyal plants grown in greenhouses or fields had better growth than those grown in plant factories under different light spectrums. Furthermore, the calcium foliar application improved the physiological and biochemical properties of the plants in all the studied systems.


Assuntos
Mentha pulegium , Nanopartículas , Cálcio , Carotenoides , Cálcio da Dieta , Carbonato de Cálcio , Carbonatos
7.
Sci Rep ; 13(1): 8457, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231167

RESUMO

Considering the potential use of nanomaterials, particularly carbon-based nanostructures, in agriculture, we conducted a study to investigate the effect of graphene oxide (GO) on strawberry plants under salinity and alkalinity stress conditions. We used GO concentrations of 0, 2.5, 5, 10, and 50 mg/L, and applied stress treatments at three levels: without stress, salinity (80 mM NaCl), and alkalinity (40 mM NaHCO3). Our results indicate that both salinity and alkalinity stress negatively impacted the gas exchange parameters of the strawberry plants. However, the application of GO significantly improved these parameters. Specifically, GO increased PI, Fv, Fm, and RE0/RC parameters, as well as chlorophyll and carotenoid contents in the plants. Moreover, the use of GO significantly increased the early yield and dry weight of leaves and roots. Therefore, it can be concluded that the application of GO can enhance the photosynthetic performance of strawberry plants, and improve their resistance to stress conditions.


Assuntos
Fragaria , Nanopartículas , Cloreto de Sódio/farmacologia , Tolerância ao Sal , Clorofila/química , Cloreto de Sódio na Dieta/farmacologia , Salinidade , Folhas de Planta
8.
Sci Rep ; 13(1): 6717, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185295

RESUMO

This paper reports on the findings of an experimental study that investigated the impact of various environmental factors on the growth of lettuce and basil plants in vertical farms. The study employed the Taguchi method, a statistical design of experiments approach, to efficiently identify the optimal growth conditions for these crops in a hyper-controlled environment. By reducing the time and cost of designing and running experiments, this method allowed for the simultaneous investigation of multiple environmental factors that affect plant growth. A total of 27 treatments were selected using the Taguchi approach, and the signal to noise ratio was calculated to predict the optimal levels of each environmental condition for maximizing basil and lettuce growth parameters. The results showed that most of the parameters, except for EC and relative humidity for certain growth parameters, were interrelated with each other. To validate the results, confirmation tests were conducted based on the predicted optimal parameters. The low error ratio between expected and predicted values (1-3%) confirmed the effectiveness of the Taguchi approach for determining the optimal environmental conditions for plant growth in vertical farms.


Assuntos
Ocimum basilicum , Lactuca , Fazendas , Projetos de Pesquisa
9.
Sci Rep ; 13(1): 8600, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237093

RESUMO

The use of light-emitting diode (LED) technology represents a promising approach to improve plant growth and metabolic activities. The aim of this study was to investigate the effect of different light spectra: red (656 nm), blue (450 nm), red/blue (3:1), and white (peak at 449 nm) on biochemical properties, photosynthesis and gene expression in two lettuce cultivars (Lollo Rossa and Lollo Bionda) grown under different methods of nutrient solution replacement in hydroponics. Complete replacement and EC-based replacement of nutrient solution increased content of proline and soluble sugars and activity of antioxidant enzymes (CAT, GPX and SOD) under the red/blue LED and red LED light treatments in both cultivars. In addition, the red/blue and the monochromatic red light increased the soluble protein content and the antioxidant activity in the Lollo Rosa cultivar under the replacement method according to the needs of the plant. An increase in flavonoid content in the EC-based method in the Lollo Rosa variety treated with a combination of red and blue light was also observed. The red/blue light had the greatest induction effect on anthocyanin content, expression of the UFGT, CHS, and Rubisco small subunit genes, and the net photosynthetic rate. Data presented here will directly contribute to the development of nutrient solution and LED spectrum management strategies to significantly improve plant growth and metabolism, while avoiding water and nutrient waste, and environmental pollution.


Assuntos
Lactuca , Fotossíntese , Lactuca/metabolismo , Luz , Nutrientes , Antioxidantes/metabolismo , Expressão Gênica
10.
PLoS One ; 17(12): e0277923, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36480512

RESUMO

Tomatoes (Lycopersicun esculentum L.) are an important group of vegetable crops that have high economical and nutritional value. The use of fertilizers and appropriate substrates is one of the important strategies that can assist in increasing the yield and quality of fruits. The present study aimed to investigate the effects of exogenous seaweed extract (Nizamuddinia zanardinii), silicon (Na2SiO3), and selenium (Na2SeO3) on quality attributes and fruit yield (FY) of tomato under palm peat + perlite and coco peat + perlite substrates. Seaweed extract significantly improved several of the fruit quality attributes such as total carbohydrate content, total soluble solids (TSS), and pH as well as the FY. The results showed that silicon (Si) (75 mg) was the best foliar spray treatment to enhance the fruit firmness (30.46 N), fruit volume (196.8 cm3), and FY (3320.5 g). The highest amount of plant yield (3429.33 g) was obtained by the interaction effects of silicon (75 mg L-1) under the effect of palm peat. The use of selenium (Se) led to improvements in flavor index (TSS/TA). Also, the application of palm peat + perlite substrate caused an increase in vitamin C (16.62 mg/100g FW), compared to other substrates (14.27 mg/100g FW). The present study suggested that foliar spray with seaweed extract and Si had beneficial effects on the quality and FY of tomatoes. Also, the palm peat substrate can be used as a good alternative to the coco peat substrate in the hydroponic system.


Assuntos
Selênio , Solanum lycopersicum , Frutas , Silício , Extratos Vegetais/farmacologia
11.
Sci Rep ; 12(1): 13257, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918416

RESUMO

Considering the destructive effect of stresses on the photosynthetic apparatus of plants and the important role of light in photosynthesis, we investigated the effect of complementary light on the photosynthetic apparatus under salinity and alkalinity stress conditions. Light-emitting diodes (LEDs) in monochromatic blue (460 nm), monochromatic red (660 nm), dichromatic blue/red (1:3), white/yellow (400-700 nm) at 200 µmol m-2 S-1, and without LED treatment were used. The stress treatments were in three stages: Control (no stress), Alkalinity (40 mM NaHCO3), and Salinity (80 mM NaCl). Our results showed that salinity and alkaline stress reduced CO2 assimilation by 62.64% and 40.81%, respectively, compared to the control treatment. The blue light spectrum had the highest increase in water use efficiency (54%) compared to the treatment without supplementary light. Under salinity and alkalinity stress, L, K, and H bands increased and G bands decreased compared to the control treatment, with blue/red light causing the highest increase in L and K bands under both stress conditions. In salinity and alkalinity stress, white/yellow and blue/red spectra caused the highest increase in H bands. Complementary light spectra increased the G band compared to the treatment without complementary light. There was a significant decrease in power indices and quantum power parameters due to salt and alkalinity stress. The use of light spectra, especially blue, red, and blue/red light, increased these parameters compared with treatment without complementary light. Different light spectra have different effects on the photosynthetic apparatus of plants. It can be concluded that using red, blue spectra and their combination can increase the resistance of plants to stress conditions and be adopted as a strategy in planting plants under stress conditions.


Assuntos
Fragaria , Fotossíntese , Folhas de Planta , Salinidade , Cloreto de Sódio , Água
12.
Sci Rep ; 12(1): 9272, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661116

RESUMO

The use of complementary light spectra is a potential new approach to studying the increase in plant resilience under stress conditions. The purpose of this experiment was to investigate the effect of different spectra of complementary light on the growth and development of strawberry plants under salinity and alkalinity stress conditions. Plants were grown in the greenhouse under ambient light and irradiated with blue (460 nm), red (660 nm), blue/red (1:3), and white/yellow (400-700 nm) light during the developmental stages. The stress treatments were as follows: control (non-stress), alkalinity (40 mM NaHCO3), and salinity (80 mM NaCl). Our results showed that salinity and alkalinity stress decreased fresh and dry weights and the number of green leaves, and increased chlorotic, tip burn, and dry leaves. The blue and red spectra had a greater effect on reducing the effects of stress compared to other spectra. Stress conditions decreased SPAD and RWC, although blue light increased SPAD, and blue/red light increased RWC under stress conditions. Blue/red and white/yellow light had the greatest effect on reproductive traits. Stress conditions affected fruit color indicators, and red and blue light had the most significant effect on these traits. Under stress conditions, sodium uptake increased, while K, Ca, Mg, and Fe uptake decreased, markedly. Blue and red light and their combination alleviated this reducing effect of stress. It can be concluded that the effects of salinity and alkalinity stresses can be reduced by manipulating the supplemental light spectrum. The use of artificial light can be extended to stresses.


Assuntos
Fragaria , Crescimento e Desenvolvimento , Luz , Folhas de Planta , Salinidade
13.
PLoS One ; 16(12): e0261585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34941932

RESUMO

Strawberry is one of the plants sensitive to salt and alkalinity stress. Light quality affects plant growth and metabolic activities. However, there is no clear answer in the literature on how light can improve the performance of the photosynthetic apparatus of this species under salt and alkalinity stress. The aim of this work was to investigate the effects of different spectra of supplemental light on strawberry (cv. Camarosa) under salt and alkalinity stress conditions. Light spectra of blue (with peak 460 nm), red (with peak 660 nm), blue/red (1:3), white/yellow (1:1) (400-700 nm) and ambient light were used as control. There were three stress treatments: control (no stress), alkalinity (40 mM NaHCO3), and salinity (80 mM NaCl). Under stress conditions, red and red/blue light had a positive effect on CO2 assimilation. In addition, blue/red light increased intrinsic water use efficiency (WUEi) under both stress conditions. Salinity and alkalinity stress decreased OJIP curves compared to the control treatment. Blue light caused an increase in its in plants under salinity stress, and red and blue/red light caused an increase in its in plants under alkalinity. Both salt and alkalinity stress caused a significant reduction in photosystem II (PSII) performance indices and quantum yield parameters. Adjustment of light spectra, especially red light, increased these parameters. It can be concluded that the adverse effects of salt and alkalinity stress on photosynthesis can be partially alleviated by changing the light spectra.


Assuntos
Fragaria/fisiologia , Fragaria/crescimento & desenvolvimento , Fragaria/efeitos da radiação , Luz , Fotossíntese , Salinidade , Estresse Salino
14.
Environ Geochem Health ; 42(8): 2535-2545, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31583504

RESUMO

The objective of this research was to determine the combined effects of ethylenediaminetetraacetic acid (EDTA) and plant growth-promoting rhizobacteria (PGPR) on the phytostabilization of Cd, Pb, and Zn by corn and chemical fractionation of these elements in soil. Three heavy metal-resistant bacteria (P18, P15, and P19) were selected. All strains, belonging to the fluorescent pseudomonads, exhibited plant growth-promoting properties, including phosphorus solubilization and production of siderophore, indole acetic acid, and 1-aminocyclopropane-1-carboxylic acid deaminase. Applying EDTA individually or in combination with bacterial strains (P18 and P15) significantly increased shoot biomass. The highest dry shoot biomass was recorded in the combined treatment of EDTA and P15-inoculated pots. Application of EDTA in PGPR-inoculated pots increased concentrations of heavy metals in corn shoots and roots compared to the control. The highest concentration of Zn in corn root and shoot was observed in P15 + EDTA treatment, which were 2.0-fold and 1.3-fold higher than those in the untreated soil. Results of chemical speciation showed that the co-application of EDTA and fluorescent pseudomonads strains increased the bioavailability of Zn, Pb, and Cd by their redistribution from less soluble fractions to water-soluble forms. It was concluded that bacterial inoculation could improve the efficiency of EDTA in phytostabilization of heavy metals from multi-metal contaminated soils.


Assuntos
Inoculantes Agrícolas , Ácido Edético/química , Metais Pesados/química , Poluentes do Solo/química , Zea mays/crescimento & desenvolvimento , Biodegradação Ambiental , Disponibilidade Biológica , Biomassa , Ácidos Indolacéticos/metabolismo , Irã (Geográfico) , Metais Pesados/metabolismo , Metais Pesados/farmacocinética , Fósforo/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Pseudomonas/fisiologia , Rhizobiaceae , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/farmacocinética , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...