Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 4(9): e6825, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19724641

RESUMO

By facilitating independent shifts in species' distributions, climate disruption may result in the rapid development of novel species assemblages that challenge the capacity of species to co-exist and adapt. We used a multivariate approach borrowed from paleoecology to quantify the potential change in California terrestrial breeding bird communities based on current and future species-distribution models for 60 focal species. Projections of future no-analog communities based on two climate models and two species-distribution-model algorithms indicate that by 2070 over half of California could be occupied by novel assemblages of bird species, implying the potential for dramatic community reshuffling and altered patterns of species interactions. The expected percentage of no-analog bird communities was dependent on the community scale examined, but consistent geographic patterns indicated several locations that are particularly likely to host novel bird communities in the future. These no-analog areas did not always coincide with areas of greatest projected species turnover. Efforts to conserve and manage biodiversity could be substantially improved by considering not just future changes in the distribution of individual species, but including the potential for unprecedented changes in community composition and unanticipated consequences of novel species assemblages.


Assuntos
Aves/fisiologia , Mudança Climática , Algoritmos , Animais , Biodiversidade , California , Clima , Conservação dos Recursos Naturais , Ecossistema , Extinção Biológica , Geografia , Análise Multivariada , Dinâmica Populacional , Probabilidade , Especificidade da Espécie , Temperatura
2.
Proc Natl Acad Sci U S A ; 106(24): 9721-4, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19509337

RESUMO

Managed relocation (MR) has rapidly emerged as a potential intervention strategy in the toolbox of biodiversity management under climate change. Previous authors have suggested that MR (also referred to as assisted colonization, assisted migration, or assisted translocation) could be a last-alternative option after interrogating a linear decision tree. We argue that numerous interacting and value-laden considerations demand a more inclusive strategy for evaluating MR. The pace of modern climate change demands decision making with imperfect information, and tools that elucidate this uncertainty and integrate scientific information and social values are urgently needed. We present a heuristic tool that incorporates both ecological and social criteria in a multidimensional decision-making framework. For visualization purposes, we collapse these criteria into 4 classes that can be depicted in graphical 2-D space. This framework offers a pragmatic approach for summarizing key dimensions of MR: capturing uncertainty in the evaluation criteria, creating transparency in the evaluation process, and recognizing the inherent tradeoffs that different stakeholders bring to evaluation of MR and its alternatives.


Assuntos
Biodiversidade , Animais , Incerteza
3.
Nature ; 453(7193): 353-7, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18480817

RESUMO

Significant changes in physical and biological systems are occurring on all continents and in most oceans, with a concentration of available data in Europe and North America. Most of these changes are in the direction expected with warming temperature. Here we show that these changes in natural systems since at least 1970 are occurring in regions of observed temperature increases, and that these temperature increases at continental scales cannot be explained by natural climate variations alone. Given the conclusions from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report that most of the observed increase in global average temperatures since the mid-twentieth century is very likely to be due to the observed increase in anthropogenic greenhouse gas concentrations, and furthermore that it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica, we conclude that anthropogenic climate change is having a significant impact on physical and biological systems globally and in some continents.


Assuntos
Ecossistema , Efeito Estufa , Atividades Humanas , Agricultura , Bases de Dados Factuais , Agricultura Florestal , Geografia , História do Século XX , História do Século XXI , Gelo , Internacionalidade , Biologia Marinha , Modelos Estatísticos , Temperatura
4.
Int J Biometeorol ; 51(5): 361-73, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17245563

RESUMO

The intra- and inter-season complexity of bird migration has received limited attention in climatic change research. Our phenological analysis of 22 species collected in Chicago, USA, (1979-2002) evaluates the relationship between multi-scalar climate variables and differences (1) in arrival timing between sexes, (2) in arrival distributions among species, and (3) between spring and fall migration. The early migratory period for earliest arriving species (i.e., short-distance migrants) and earliest arriving individuals of a species (i.e., males) most frequently correlate with climate variables. Compared to long-distance migrant species, four times as many short-distance migrants correlate with spring temperature, while 8 of 11 (73%) of long-distance migrant species' arrival is correlated with the North Atlantic Oscillation (NAO). While migratory phenology has been correlated with NAO in Europe, we believe that this is the first documentation of a significant association in North America. Geographically proximate conditions apparently influence migratory timing for short-distance migrants while continental-scale climate (e.g., NAO) seemingly influences the phenology of Neotropical migrants. The preponderance of climate correlations is with the early migratory period, not the median of arrival, suggesting that early spring conditions constrain the onset or rate of migration for some species. The seasonal arrival distribution provides considerable information about migratory passage beyond what is apparent from statistical analyses of phenology. A relationship between climate and fall phenology is not detected at this location. Analysis of the within-season complexity of migration, including multiple metrics of arrival, is essential to detect species' responses to changing climate as well as evaluate the underlying biological mechanisms.


Assuntos
Aves/fisiologia , Clima , Voo Animal , Animais , Chicago , Feminino , Masculino , Estações do Ano , Caracteres Sexuais , Especificidade da Espécie
5.
Ambio ; 36(8): 657-60, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18240681

RESUMO

Using Christmas Bird Count data, we analyze the annual spatio-temporal abundances of six passerine species in the upper Great Plains, US (1960-1990). This study provides new insight into how global warming could cause separation of species within present-day communities. We find that winter relative abundances of similarly-sized songbirds are differentially affected by ambient winter temperature. As such, average annual winter temperature fluctuations (i.e., severity of winter) are significantly (P < 0.05) correlated with the relative abundances of three species while the other three are not. Our conditional probability-of-occurrence analysis indicates that the abundances of the three temperature-associated species declined markedly below -4 degrees C while the abundances of the other three species fluctuated little from 8 degrees C to -16 degrees C. We conclude that even in colder climates i) the winter distributions of some, but not all, songbirds are directly or indirectly limited by temperature; and ii) these birds have dynamic abundances that can quickly respond to temperature changes.


Assuntos
Efeito Estufa , Aves Canoras , Animais , Densidade Demográfica , Dinâmica Populacional , Estações do Ano , Temperatura , Estados Unidos
7.
Proc Natl Acad Sci U S A ; 102(21): 7465-9, 2005 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-15899975

RESUMO

Average global surface-air temperature is increasing. Contention exists over relative contributions by natural and anthropogenic forcings. Ecological studies attribute plant and animal changes to observed warming. Until now, temperature-species connections have not been statistically attributed directly to anthropogenic climatic change. Using modeled climatic variables and observed species data, which are independent of thermometer records and paleoclimatic proxies, we demonstrate statistically significant "joint attribution," a two-step linkage: human activities contribute significantly to temperature changes and human-changed temperatures are associated with discernible changes in plant and animal traits. Additionally, our analyses provide independent testing of grid-box-scale temperature projections from a general circulation model (HadCM3).


Assuntos
Ecossistema , Efeito Estufa , Atividades Humanas , Modelos Teóricos , Temperatura , Simulação por Computador , Método de Monte Carlo , Especificidade da Espécie , Fatores de Tempo
8.
Nature ; 421(6918): 57-60, 2003 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-12511952

RESUMO

Over the past 100 years, the global average temperature has increased by approximately 0.6 degrees C and is projected to continue to rise at a rapid rate. Although species have responded to climatic changes throughout their evolutionary history, a primary concern for wild species and their ecosystems is this rapid rate of change. We gathered information on species and global warming from 143 studies for our meta-analyses. These analyses reveal a consistent temperature-related shift, or 'fingerprint', in species ranging from molluscs to mammals and from grasses to trees. Indeed, more than 80% of the species that show changes are shifting in the direction expected on the basis of known physiological constraints of species. Consequently, the balance of evidence from these studies strongly suggests that a significant impact of global warming is already discernible in animal and plant populations. The synergism of rapid temperature rise and other stresses, in particular habitat destruction, could easily disrupt the connectedness among species and lead to a reformulation of species communities, reflecting differential changes in species, and to numerous extirpations and possibly extinctions.


Assuntos
Animais Selvagens/fisiologia , Evolução Biológica , Ecossistema , Efeito Estufa , Fenômenos Fisiológicos Vegetais , Animais , Viés , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...