Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Psychiatry ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671214

RESUMO

Formal thought disorder (FTD) is a clinical key factor in schizophrenia, but the neurobiological underpinnings remain unclear. In particular, the relationship between FTD symptom dimensions and patterns of regional brain volume loss in schizophrenia remains to be established in large cohorts. Even less is known about the cellular basis of FTD. Our study addresses these major obstacles by enrolling a large multi-site cohort acquired by the ENIGMA Schizophrenia Working Group (752 schizophrenia patients and 1256 controls), to unravel the neuroanatomy of FTD in schizophrenia and using virtual histology tools on implicated brain regions to investigate the cellular basis. Based on the findings of previous clinical and neuroimaging studies, we decided to separately explore positive, negative and total formal thought disorder. We used virtual histology tools to relate brain structural changes associated with FTD to cellular distributions in cortical regions. We identified distinct neural networks positive and negative FTD. Both networks encompassed fronto-occipito-amygdalar brain regions, but positive and negative FTD demonstrated a dissociation: negative FTD showed a relative sparing of orbitofrontal cortical thickness, while positive FTD also affected lateral temporal cortices. Virtual histology identified distinct transcriptomic fingerprints associated for both symptom dimensions. Negative FTD was linked to neuronal and astrocyte fingerprints, while positive FTD also showed associations with microglial cell types. These results provide an important step towards linking FTD to brain structural changes and their cellular underpinnings, providing an avenue for a better mechanistic understanding of this syndrome.

2.
Mol Psychiatry ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336840

RESUMO

Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflect the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenia's alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia.

3.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961617

RESUMO

Objective: Schizophrenia is a multifaceted disorder associated with structural brain heterogeneity. Despite its relevance for identifying illness subtypes and informative biomarkers, structural brain heterogeneity in schizophrenia remains incompletely understood. Therefore, the objective of this study was to provide a comprehensive insight into the structural brain heterogeneity associated with schizophrenia. Methods: This meta- and mega-analysis investigated the variability of multimodal structural brain measures of white and gray matter in individuals with schizophrenia versus healthy controls. Using the ENIGMA dataset of MRI-based brain measures from 22 international sites with up to 6139 individuals for a given brain measure, we examined variability in cortical thickness, surface area, folding index, subcortical volume and fractional anisotropy. Results: We found that individuals with schizophrenia are distinguished by higher heterogeneity in the frontotemporal network with regard to multimodal structural measures. Moreover, individuals with schizophrenia showed higher homogeneity of the folding index, especially in the left parahippocampal region. Conclusions: Higher multimodal heterogeneity in frontotemporal regions potentially implies different subtypes of schizophrenia that converge on impaired frontotemporal interaction as a core feature of the disorder. Conversely, more homogeneous folding patterns in the left parahippocampal region might signify a consistent characteristic of schizophrenia shared across subtypes. These findings underscore the importance of structural brain variability in advancing our neurobiological understanding of schizophrenia, and aid in identifying illness subtypes as well as informative biomarkers.

4.
Res Sq ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37841855

RESUMO

Formal thought disorder (FTD) is a key clinical factor in schizophrenia, but the neurobiological underpinnings remain unclear. In particular, relationship between FTD symptom dimensions and patterns of regional brain volume deficiencies in schizophrenia remain to be established in large cohorts. Even less is known about the cellular basis of FTD. Our study addresses these major obstacles based on a large multi-site cohort through the ENIGMA Schizophrenia Working Group (752 individuals with schizophrenia and 1256 controls), to unravel the neuroanatomy of positive, negative and total FTD in schizophrenia and their cellular bases. We used virtual histology tools to relate brain structural changes associated with FTD to cellular distributions in cortical regions. We identified distinct neural networks for positive and negative FTD. Both networks encompassed fronto-occipito-amygdalar brain regions, but negative FTD showed a relative sparing of orbitofrontal cortical thickness, while positive FTD also affected lateral temporal cortices. Virtual histology identified distinct transcriptomic fingerprints associated for both symptom dimensions. Negative FTD was linked to neuronal and astrocyte fingerprints, while positive FTD was also linked to microglial cell types. These findings relate different dimensions of FTD to distinct brain structural changes and their cellular underpinnings, improve our mechanistic understanding of these key psychotic symptoms.

5.
Front Neuroinform ; 17: 1207721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404336

RESUMO

Collaborative neuroimaging research is often hindered by technological, policy, administrative, and methodological barriers, despite the abundance of available data. COINSTAC (The Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation) is a platform that successfully tackles these challenges through federated analysis, allowing researchers to analyze datasets without publicly sharing their data. This paper presents a significant enhancement to the COINSTAC platform: COINSTAC Vaults (CVs). CVs are designed to further reduce barriers by hosting standardized, persistent, and highly-available datasets, while seamlessly integrating with COINSTAC's federated analysis capabilities. CVs offer a user-friendly interface for self-service analysis, streamlining collaboration, and eliminating the need for manual coordination with data owners. Importantly, CVs can also be used in conjunction with open data as well, by simply creating a CV hosting the open data one would like to include in the analysis, thus filling an important gap in the data sharing ecosystem. We demonstrate the impact of CVs through several functional and structural neuroimaging studies utilizing federated analysis showcasing their potential to improve the reproducibility of research and increase sample sizes in neuroimaging studies.

6.
medRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333179

RESUMO

Formal thought disorder (FTD) is a key clinical factor in schizophrenia, but the neurobiological underpinnings remain unclear. In particular, relationship between FTD symptom dimensions and patterns of regional brain volume deficiencies in schizophrenia remain to be established in large cohorts. Even less is known about the cellular basis of FTD. Our study addresses these major obstacles based on a large multi-site cohort through the ENIGMA Schizophrenia Working Group (752 individuals with schizophrenia and 1256 controls), to unravel the neuroanatomy of positive, negative and total FTD in schizophrenia and their cellular bases. We used virtual histology tools to relate brain structural changes associated with FTD to cellular distributions in cortical regions. We identified distinct neural networks for positive and negative FTD. Both networks encompassed fronto-occipito-amygdalar brain regions, but negative FTD showed a relative sparing of orbitofrontal cortical thickness, while positive FTD also affected lateral temporal cortices. Virtual histology identified distinct transcriptomic fingerprints associated for both symptom dimensions. Negative FTD was linked to neuronal and astrocyte fingerprints, while positive FTD was also linked to microglial cell types. These findings relate different dimensions of FTD to distinct brain structural changes and their cellular underpinnings, improve our mechanistic understanding of these key psychotic symptoms.

7.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214791

RESUMO

Collaborative neuroimaging research is often hindered by technological, policy, administrative, and methodological barriers, despite the abundance of available data. COINSTAC is a platform that successfully tackles these challenges through federated analysis, allowing researchers to analyze datasets without publicly sharing their data. This paper presents a significant enhancement to the COINSTAC platform: COINSTAC Vaults (CVs). CVs are designed to further reduce barriers by hosting standardized, persistent, and highly-available datasets, while seamlessly integrating with COINSTAC's federated analysis capabilities. CVs offer a user-friendly interface for self-service analysis, streamlining collaboration and eliminating the need for manual coordination with data owners. Importantly, CVs can also be used in conjunction with open data as well, by simply creating a CV hosting the open data one would like to include in the analysis, thus filling an important gap in the data sharing ecosystem. We demonstrate the impact of CVs through several functional and structural neuroimaging studies utilizing federated analysis showcasing their potential to improve the reproducibility of research and increase sample sizes in neuroimaging studies.

9.
Transl Psychiatry ; 13(1): 50, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774336

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder, with onset in childhood and a considerable likelihood to persist into adulthood. Our previous work has identified that across adults and adolescents with ADHD, gray matter volume (GMV) alteration in the frontal cortex was consistently associated with working memory underperformance, and GMV alteration in the cerebellum was associated with inattention. Recent knowledge regarding ADHD genetic risk loci makes it feasible to investigate genomic factors underlying these persistent GMV alterations, potentially illuminating the pathology of ADHD persistence. Based on this, we applied a sparsity-constrained multivariate data fusion approach, sparse parallel independent component analysis, to GMV variations in the frontal and cerebellum regions and candidate risk single nucleotide polymorphisms (SNPs) data from 341 unrelated adult participants, including 167 individuals with ADHD, 47 unaffected siblings, and 127 healthy controls. We identified one SNP component significantly associated with one GMV component in superior/middle frontal regions and replicated this association in 317 adolescents from ADHD families. The association was stronger in individuals with ADHD than in controls, and stronger in adults and older adolescents than in younger ones. The SNP component highlights 93 SNPs in long non-coding RNAs mainly in chromosome 5 and 21 protein-coding genes that are significantly enriched in human neuron cells. Eighteen identified SNPs have regulation effects on gene expression, transcript expression, isoform percentage, or methylation level in frontal regions. Identified genes highlight MEF2C, CADM2, and CADPS2, which are relevant for modulating neuronal substrates underlying high-level cognition in ADHD, and their causality effects on ADHD persistence await further investigations. Overall, through a multivariate analysis, we have revealed a genomic pattern underpinning the frontal gray matter variation related to working memory deficit in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Substância Cinzenta , Humanos , Adulto , Adolescente , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Encéfalo/patologia , Memória de Curto Prazo , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Imageamento por Ressonância Magnética , Transtornos da Memória/patologia , Genômica
10.
Neuroinformatics ; 21(2): 287-301, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36434478

RESUMO

With the growth of decentralized/federated analysis approaches in neuroimaging, the opportunities to study brain disorders using data from multiple sites has grown multi-fold. One such initiative is the Neuromark, a fully automated spatially constrained independent component analysis (ICA) that is used to link brain network abnormalities among different datasets, studies, and disorders while leveraging subject-specific networks. In this study, we implement the neuromark pipeline in COINSTAC, an open-source neuroimaging framework for collaborative/decentralized analysis. Decentralized exploratory analysis of nearly 2000 resting-state functional magnetic resonance imaging datasets collected at different sites across two cohorts and co-located in different countries was performed to study the resting brain functional network connectivity changes in adolescents who smoke and consume alcohol. Results showed hypoconnectivity across the majority of networks including sensory, default mode, and subcortical domains, more for alcohol than smoking, and decreased low frequency power. These findings suggest that global reduced synchronization is associated with both tobacco and alcohol use. This proof-of-concept work demonstrates the utility and incentives associated with large-scale decentralized collaborations spanning multiple sites.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Adolescente , Vias Neurais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Consumo de Bebidas Alcoólicas , Etanol , Fumar , Mapeamento Encefálico
11.
Front Hum Neurosci ; 16: 1001692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438633

RESUMO

Background: Structural neuroimaging studies have identified similarities in the brains of individuals diagnosed with schizophrenia (SZ) and bipolar I disorder (BP), with overlap in regions of gray matter (GM) deficits between the two disorders. Recent studies have also shown that the symptom phenotypes associated with SZ and BP may allow for a more precise categorization than the current diagnostic criteria. In this study, we sought to identify GM alterations that were unique to each disorder and whether those alterations were also related to unique symptom profiles. Materials and methods: We analyzed the GM patterns and clinical symptom presentations using independent component analysis (ICA), hierarchical clustering, and n-way biclustering in a large (N ∼ 3,000), merged dataset of neuroimaging data from healthy volunteers (HV), and individuals with either SZ or BP. Results: Component A showed a SZ and BP < HV GM pattern in the bilateral insula and cingulate gyrus. Component B showed a SZ and BP < HV GM pattern in the cerebellum and vermis. There were no significant differences between diagnostic groups in these components. Component C showed a SZ < HV and BP GM pattern bilaterally in the temporal poles. Hierarchical clustering of the PANSS scores and the ICA components did not yield new subgroups. N-way biclustering identified three unique subgroups of individuals within the sample that mapped onto different combinations of ICA components and symptom profiles categorized by the PANSS but no distinct diagnostic group differences. Conclusion: These multivariate results show that diagnostic boundaries are not clearly related to structural differences or distinct symptom profiles. Our findings add support that (1) BP tend to have less severe symptom profiles when compared to SZ on the PANSS without a clear distinction, and (2) all the gray matter alterations follow the pattern of SZ < BP < HV without a clear distinction between SZ and BP.

13.
Mol Psychiatry ; 27(9): 3731-3737, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35739320

RESUMO

Schizophrenia is frequently associated with obesity, which is linked with neurostructural alterations. Yet, we do not understand how the brain correlates of obesity map onto the brain changes in schizophrenia. We obtained MRI-derived brain cortical and subcortical measures and body mass index (BMI) from 1260 individuals with schizophrenia and 1761 controls from 12 independent research sites within the ENIGMA-Schizophrenia Working Group. We jointly modeled the statistical effects of schizophrenia and BMI using mixed effects. BMI was additively associated with structure of many of the same brain regions as schizophrenia, but the cortical and subcortical alterations in schizophrenia were more widespread and pronounced. Both BMI and schizophrenia were primarily associated with changes in cortical thickness, with fewer correlates in surface area. While, BMI was negatively associated with cortical thickness, the significant associations between BMI and surface area or subcortical volumes were positive. Lastly, the brain correlates of obesity were replicated among large studies and closely resembled neurostructural changes in major depressive disorders. We confirmed widespread associations between BMI and brain structure in individuals with schizophrenia. People with both obesity and schizophrenia showed more pronounced brain alterations than people with only one of these conditions. Obesity appears to be a relevant factor which could account for heterogeneity of brain imaging findings and for differences in brain imaging outcomes among people with schizophrenia.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Humanos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Obesidade
14.
Neuroinformatics ; 20(2): 377-390, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34807353

RESUMO

The field of neuroimaging has embraced sharing data to collaboratively advance our understanding of the brain. However, data sharing, especially across sites with large amounts of protected health information (PHI), can be cumbersome and time intensive. Recently, there has been a greater push towards collaborative frameworks that enable large-scale federated analysis of neuroimaging data without the data having to leave its original location. However, there still remains a need for a standardized federated approach that not only allows for data sharing adhering to the FAIR (Findability, Accessibility, Interoperability, Reusability) data principles, but also streamlines analyses and communication while maintaining subject privacy. In this paper, we review a non-exhaustive list of neuroimaging analytic tools and frameworks currently in use. We then provide an update on our federated neuroimaging analysis software system, the Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation (COINSTAC). In the end, we share insights on future research directions for federated analysis of neuroimaging data.


Assuntos
Disseminação de Informação , Neuroimagem , Disseminação de Informação/métodos , Software
15.
Front Neurosci ; 15: 708387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720851

RESUMO

Introduction: Individuals with schizophrenia have consistent gray matter reduction throughout the cortex when compared to healthy individuals. However, the reduction patterns vary based on the quantity (concentration or volume) utilized by study. The objective of this study was to identify commonalities between gray matter concentration and gray matter volume effects in schizophrenia. Methods: We performed both univariate and multivariate analyses of case/control effects on 145 gray matter images from 66 participants with schizophrenia and 79 healthy controls, and processed to compare the concentration and volume estimates. Results: Diagnosis effects in the univariate analysis showed similar areas of volume and concentration reductions in the insula, occipitotemporal gyrus, temporopolar area, and fusiform gyrus. In the multivariate analysis, healthy controls had greater gray matter volume and concentration additionally in the superior temporal gyrus, prefrontal cortex, cerebellum, calcarine, and thalamus. In the univariate analyses there was moderate overlap between gray matter concentration and volume across the entire cortex (r = 0.56, p = 0.02). The multivariate analyses revealed only low overlap across most brain patterns, with the largest correlation (r = 0.37) found in the cerebellum and vermis. Conclusions: Individuals with schizophrenia showed reduced gray matter volume and concentration in previously identified areas of the prefrontal cortex, cerebellum, and thalamus. However, there were only moderate correlations across the cortex when examining the different gray matter quantities. Although these two quantities are related, concentration and volume do not show identical results, and therefore, should not be used interchangeably in the literature.

16.
Psychiatry Res ; 306: 114237, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655926

RESUMO

The direct effect of genetic variations on clinical phenotypes within schizophrenia (SZ) remains elusive. We examined the previously identified association of reduced gray matter concentration in the insula - medial prefrontal cortex and a quantitative trait locus located in 12q24 in a SZ dataset. The main analysis was performed on 1461 SNPs and 830 participants. The highest contributing SNPs were localized in five genes including TMEM119, which encodes a microglial marker, that is associated with neuroinflammation and Alzheimer's disease. The gene set in 12q4 may partially explain brain alterations in SZ, but they may also relate to other psychiatric and developmental disorders.


Assuntos
Esquizofrenia , Encéfalo , Cognição , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética
17.
Transl Psychiatry ; 11(1): 184, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767139

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neuropsychiatric disorder and may persist into adulthood. Working memory and attention deficits have been reported to persist from childhood to adulthood. How neuronal underpinnings of deficits differ across adolescence and adulthood is not clear. In this study, we investigated gray matter of two cohorts, 486 adults and 508 adolescents, each including participants from ADHD and healthy controls families. Two cohorts both presented significant attention and working memory deficits in individuals with ADHD. Independent component analysis was applied to the gray matter of each cohort, separately, to extract cohort-inherent networks. Then, we identified gray matter networks associated with inattention or working memory in each cohort, and projected them onto the other cohort for comparison. Two components in the inferior, middle/superior frontal regions identified in adults and one component in the insula and inferior frontal region identified in adolescents were significantly associated with working memory in both cohorts. One component in bilateral cerebellar tonsil and culmen identified in adults and one component in left cerebellar region identified in adolescents were significantly associated with inattention in both cohorts. All these components presented a significant or nominal level of gray matter reduction for ADHD participants in adolescents, but only one showed nominal reduction in adults. Our findings suggest although the gray matter reduction of these regions may not be indicative of persistency of ADHD, their persistent associations with inattention or working memory indicate an important role of these regions in the mechanism of persistence or remission of the disorder.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Criança , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Transtornos da Memória/diagnóstico por imagem , Memória de Curto Prazo , Adulto Jovem
18.
Front Psychiatry ; 12: 614010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664682

RESUMO

Research to discover clinically useful predictors of lithium response in patients with bipolar disorder has largely found them to be elusive. We demonstrate here that detailed neuroimaging may have the potential to fill this important gap in mood disorder therapeutics. Lithium treatment and bipolar disorder have both been shown to affect anatomy of the hippocampi and amygdalae but there is no consensus on the nature of their effects. We aimed to investigate structural surface anatomy changes in amygdala and hippocampus correlated with treatment response in bipolar disorder. Patients with bipolar disorder (N = 14) underwent lithium treatment, were classified by response status at acute and long-term time points, and scanned with 7 Tesla structural MRI. Large Deformation Diffeomorphic Metric Mapping was applied to detect local differences in hippocampal and amygdalar anatomy between lithium responders and non-responders. Anatomy was also compared to 21 healthy comparison participants. A patch of the ventral surface of the left hippocampus was found to be significantly atrophied in non-responders as compared to responders at the acute time point and was associated at a trend-level with long-term response status. We did not detect an association between response status and surface anatomy of the right hippocampus or amygdala. To the best of our knowledge, this is the first shape analysis of hippocampus and amygdala in bipolar disorder using 7 Tesla MRI. These results can inform future work investigating possible neuroimaging predictors of lithium response in bipolar disorder.

19.
Psychiatry Res Neuroimaging ; 311: 111282, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33780745

RESUMO

A significant proportion of individuals with attention-deficit/hyperactivity disorder (ADHD) show persistence into adulthood. The genetic and neural correlates of ADHD in adolescents versus adults remain poorly characterized. We investigated ADHD polygenic risk score (PRS) in relation to previously identified gray matter (GM) patterns, neurocognitive, and symptom findings in the same ADHD sample (462 adolescents & 422 adults from the NeuroIMAGE and IMpACT cohorts). Significant effects of ADHD PRS were found on hyperactivity and impulsivity symptoms in adolescents, hyperactivity symptom in adults, but not GM volume components. A distinct PRS effect between adolescents and adults on individual ADHD symptoms is suggested.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adolescente , Adulto , Atenção , Transtorno do Deficit de Atenção com Hiperatividade/genética , Substância Cinzenta , Humanos , Comportamento Impulsivo , Herança Multifatorial/genética
20.
Front Integr Neurosci ; 15: 726321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140591

RESUMO

Delusions are marked, fixed beliefs that are incongruent with reality. Delusions, with comorbid hallucinations, are a hallmark of certain psychotic disorders (e.g., schizophrenia). Delusions can present transdiagnostically, in neurodegenerative (e.g., Alzheimer's disease and fronto-temporal dementia), nervous system disorders (e.g., Parkinson's disease) and across other psychiatric disorders (e.g., bipolar disorder). The burden of delusions is severe and understanding the heterogeneity of delusions may delineate a more valid nosology of not only psychiatric disorders but also neurodegenerative and nervous system disorders. We systematically reviewed structural neuroimaging studies reporting on delusions in four disorder types [schizophrenia (SZ), bipolar disorder (BP), Alzheimer's disease (AD), and Parkinson's disease (PD)] to provide a comprehensive overview of neural changes and clinical presentations associated with delusions. Twenty-eight eligible studies were identified. This review found delusions were most associated with gray matter reductions in the dorsolateral prefrontal cortex (SZ, BP, and AD), left claustrum (SZ and AD), hippocampus (SZ and AD), insula (SZ, BP, and AD), amygdala (SZ and BP), thalamus (SZ and AD), superior temporal gyrus (SZ, BP, and AD), and middle frontal gyrus (SZ, BP, AD, and PD). However, there was a great deal of variability in the findings of each disorder. There is some support for the current dopaminergic hypothesis of psychosis, but we also propose new hypotheses related to the belief formation network and cognitive biases. We also propose a standardization of assessments to aid future transdiagnostic study approaches. Future studies should explore the neural and biological underpinnings of delusions to hopefully, inform future treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...